

Study System • 13 deep sea cores - foram species richness, temperature, productivity index • 100,000 yrs in Quaternary • series of multiple regression techniques to predict relationship between richness and temperature/productivity

How to rule out evolution

Add temporal scale <<< species turnover rate

E.g. Spp turnover rate forams = 20 my

Cores timescale = 0.1 my

Rule out evolution as driver of richness patterns

Focus on how temperature affects species' distribution

Correlation vs. causation

Standard methodology used to explain richness patterns is correlation between number of species and variable X.

Is this GOOD evidence that the variable <u>causes</u> observed patterns?

Alternatives??

move beyond # of species dynamics of geographic ranges

Hunt, G., T. M. Cronin, and K. Roy. 2005. Species-energy relationship in the deep sea: a test using the Quaternary fossil record. Ecology Letters **8**:739-747.