
Dr. Charles J. Krebs
CSIRO Sustainable Ecosystems
and
University of British Columbia

The Central Question

On what major fronts has the science of ecology progressed during the last 35 years?

The Background Question

What defines progress in science?

A Background Observation

Ecologists have two broad objectives:
- to promote an ecological world view
- to understand ecological systems

The first is an ethical and philosophical commitment, the second scientific

Outline

Why write a textbook
- The background of Ecology
- Distribution
- Abundance: Population ecology
- Abundance: Community ecology
- Human ecology
- The Bottom Line

Why write a textbook?

- Dissatisfaction with the current texts available in the 1960s
- An strong commitment to the Eltonian approach to ecology
- Lectures set the stage for a textbook if one follows through
The Background of Ecology

- My heroes in the late 1950s were Charles Elton at Oxford, H.G. Andrewartha at Adelaide, and Charles Birch at Sydney
- Textbooks were in short supply

The Major Question

- What controls the distribution and abundance of organisms?

Distribution - # 1

- The key question: what controls the geographical distribution of organisms?
- This question almost predates ecology - e.g. Warming (1896) on plants
- In 1963 T.T. Macan in England had laid out a hierarchical decision tree to answer this question

Macan’s Hierarchy for Analyzing Distributions

Distribution - # 2

- Major change is the appreciation of scale-dependent answers
- Habitat selection has flourished in the last 35 years
- Climate as a limitation on geographic distributions has become a paradigm
Distribution - # 3

- **Dispersal** as a limitation on distribution has emerged as the critical issue of invasive species (Elton 1958)
- **Macroecology** of range sizes first began in 1980s
 - abundance vs. range size

Population Abundance

- **Population arithmetic** has expanded on the basics already described by 1960
- **Disease** was put on the population agenda about 1980
- The basics of population dynamics have not changed in 35 years

Applied Population Problems

- **Pest control** and harvesting have changed little conceptually
- **Conservation biology** was put on the agenda about 1985 and first appeared in the 4th edition (1994)

Behavioural Ecology

- Did not exist in 1970 as a subdivision of ecology
- **Ethologists** studied animal behaviour and were more akin to psychology than biology
- One of the fastest growing areas of ecology in 1980s and 1990s

Evolutionary Ecology

- A small area of ecology in the 1960s
- Life-history theory had arisen from Cole’s 1954 paper
- r- and K-selection was introduced in 1970
- Coevolution and group-selection were key topics in 1960s / early 1970s

Community and Ecosystem Ecology - # 1

- The major issues in community ecology were already visible in 1970
 - succession
 - primary and secondary production
 - species diversity
 - stability
Community and Ecosystem Ecology - # 2

- Major changes in orientation
- Biodiversity has taken centre stage
- Focus in 1960s on energetics – the Odum approach
- Equilibrium and non-equilibrium concepts collided in mid-1980s

Community and Ecosystem Ecology - # 3

- In 1970 everyone believed that communities were equilibrium assemblies structured by competition
- Disturbance ecology began to gather steam in the 1980s and did not appear until the 4th edition (1994)
- Nonequilibrium viewpoint became prominent in the 1980s

Ecosystem Ecology - # 1

- In 1970 the predominant view of ecosystems was as energy processors
- Nutrient cycling became increasingly important when climate change and greenhouse gases were recognized as threats to humans
- Ecosystem services was coined by Paul Ehrlich in 1983 and developed in the 1990s

Human Ecology

- Human population was a strong area of concern already by the late 1960s
- Climate change did not appear as an index term in 1st edition
- Sustainable development did not appear on the horizon until the mid-1980s
 - The Bruntland Report of 1987

New Developments since 1972

- Mathematical models were present but in their infancy
- Systems analysis was big in the 1950s but already falling from grace by the 1960s
- Landscape ecology was present only as a part of wildlife management

New Technology since 1972

- Computers have made a large impact
- DNA technology has allowed new questions to be asked
- Remote sensing has been strongly developed but a mixed blessing
- Radio-telemetry has opened up new types of data collection
Old Technology since 1972
- Plant sampling methods have changed little
- Mark-recapture trapping has had minor improvements
- Insect and invertebrate sampling has changed little
- Technological improvements with aquatic sampling

Laws of Population Ecology
- Malthusian Law (geometric growth)
- Allee’s Law (feedback)
- Verhulst’s Law (competition)
- Hutchinson’s Law (interacting species)
- Liebig’s Law (limiting factors)

Laws of Community Ecology
- We do not seem to have a similar list of laws in community and ecosystem ecology

Bandwagons of Ecology
- 1950s - Density-dependence
- 1960s - Energy flow, Stability-Diversity
- 1970s - Competition
- 1980s - Mathematical modeling
- 1990s - Disturbance, non-equilibrium
- 2000s - Biodiversity, complex systems

The Eternal Challenge
- Ecologists wish to develop a robust, general theory of ecological systems
- All the research to date points in the opposite direction –
 - results are local and specific
 - generality difficult to achieve

The Bottom Line - # 1
- The same problems face ecologists in 2005 as they did in 1970
- Major progress in technical tools
- Much progress in analytical statistical and mathematical methods
- Increasing number of ecologists

Berryman (2003), Oikos 103: 695-701.
The Bottom Line - # 2
- Ecology does not differ from physics and chemistry in conceptual progress
- Confusion in discussions of progress between science and technology
- Key ecological issues now are practical
 - conservation of biodiversity
 - sustainability

The Bottom Line - # 3
- Ecology differs from other sciences in being in opposition to the dominant economic paradigm
- Politicians and too many of the public do not wish to hear about problems
- Solutions to major ecological issues are largely 'no brainers'
 - land clearing, overgrazing, CO₂

Key Ecological Issues for this Century
- Can modern agriculture become sustainable?
- How can biodiversity be best conserved?
- How will changing climate affect ecosystem dynamics?

What Can Ecologists Do?
- Keep asking interesting, critical scientific questions
- Promote systems-based research with research teams
- Educate the public about ecological truths, which rarely coincide with economic or political truths

Thanks for listening!