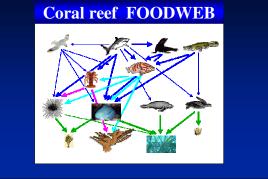
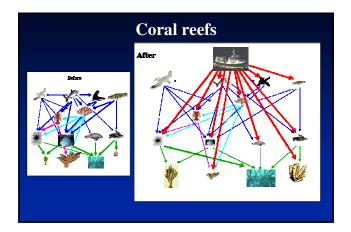


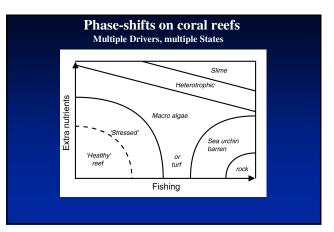
Changing Paradigms in Marine Science

- Scaling-up of ecology becoming more relevant for management
- Fisheries science is becoming more ecological (EBM)
- Barriers between ecology, fisheries, and social science are breaking down – e.g. No Take Areas

Talk Outline

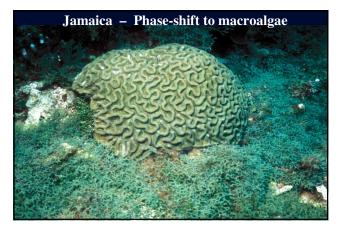

- Global threats to coral reefs
- Resilience and phase-shifts of reefs
- No-Take Areas: Tools for managing ecological resilience
- A resilience approach to reef management


RESILIENCE


- The capacity of a system to absorb insults or disturbances without fundamentally changing into an different configuration or "state"
- The system can be ecological, socio-economic or both (a linked social-ecological system)
- Alternate states may be desirable or undesirable, and so management may seek to bolster or undermine resilience

Major threats to Coral Reefs

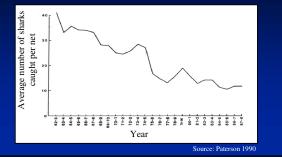
- Over-harvesting (top-down effects)
- Declining water quality (bottomup effects)
- Climate change

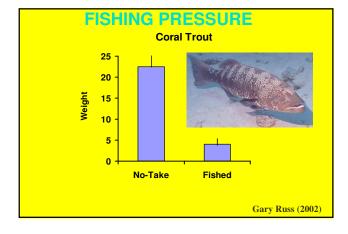


...but are gloom-and-doom stories from overseas developing countries relevant for Australian reefs?

- •Overseas evidence is flawed or doesn't apply
- •Our fisheries are the best managed in the world
- •Threats to reefs are exaggerated
- •Our reefs are pristine

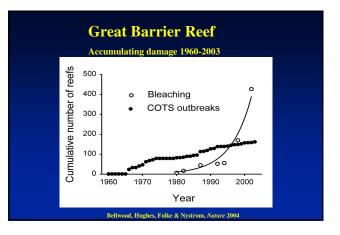
So, what is the "health" of the GBR?

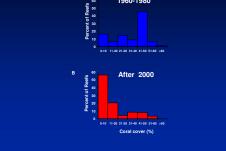

- The Great Barrier Reef is not pristine
- Increased runoff since 1850
- Wild stocks of many species have been substantially reduced:
 Crocodiles
 - Dugongs
 - Pearl Oysters
 - Sea Cucumbers
 - Sharks
 - Turtles
 - Reef Fishes

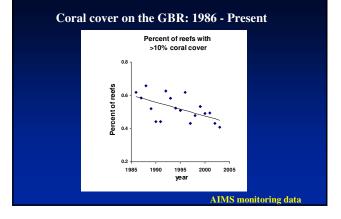

Historical evidence of huge dugong herds

"The writer's boat was once anchored in Hervey's Bay... For between three and four hours there was a continuous stream of dugongs passing... liken to the rush of cattle out of a stock-yard after a general muster."

Source: Thorne, 1876


Average number of sharks caught annually per net (1962-1988)



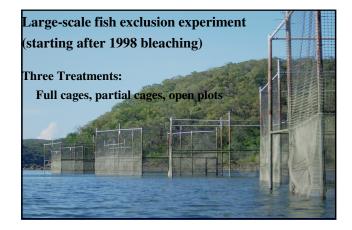


Coral cover on the GBR: 1960's - Present

Resilience eroded by loss of top predators, crown-of-thorns starfish, bleaching.....a weedier fauna

Summary of GBR:

Megafauna rapidly declining, reefs moderately fished, coral resilience challenged by chronic crown-of-thorns outbreaks and climate change.

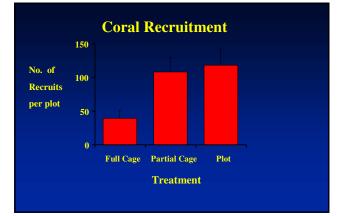

High redundancy within functional groups: High connectivity

Managing Resilience of Coral Reefs

by incorporating the role of human activities

What are the consequences of loss of large fishes from coral reefs?

In particular, does overfishing of herbivores reduce reef resilience to climate change?



Loss of fish biodiversity is important!

- Excluding herbivorous fishes increases macroalgae, reduces coral recruitment, impairs *resilience*
- Managing fisheries (and also waterquality) can prevent phase-shifts, help to maintain reef resilience to future climate change.
 (Local, proactive management in response to a global threat)

A Resilience approach to Management A new framework for Adaptive Governance

- Changing focus from reactive to *proactive* management, *based on maintaining resilience*, *anticipating* future uncertainty
- Building an understanding of resource and ecosystem *dynamics* - developing new metrics to monitor resilience
- Developing management practices that respond to ecological feedbacks
- Supporting an adaptive governance framework with shared responsibilities, operating at multiple scale.

Hughes et al., TREE 2005

ACKNOWLEDGEMENTS

The Resilience Alliance Packard Foundation Australian Research Council

