# Indirect effects in plant community ecology

### **"Apparent competition"** John Morgan La Trobe University





# In ecology

 Outcomes of pairwise interactions shape our thinking in community ecology e.g. competitive interactions and competitive hierarchies exist and the outcome is competitive exclusion (A>B) – linear or transitive

## Indirect interactions?

Multi-species interactions (A>B>C)





## Indirect Interactions - Not a new idea

#### See reviews by:

- Strauss (1991) Indirect effects in community ecology: their definition, study and importance. TREE 6: 206-210
- Wootton (1994) The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Sys. 25: 443-466

#### Gaining renewed interest:

- White et al. (2006) Biotic indirect effects: a neglected concept in invasion bioogy. *Diversity Distrib.* 12: 443-455
- Meiners (2007) Apparent competition: an impact of exotic shrub invasion on tree regeneration. *Biol. Invasions* 9: 849-855
- Seifan & Kadmon (2006) Indirect effects of cattle grazing on shrub spatial pattern in a mediterranean scrub community. *Basic and Applied Ecology* 7: 496-506

Malmstrom et al. (2005) Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. *Oecologia* **145**, 153-164





Fig. 2 Aphid densities in Yolo County experimental grass stands in late spring of the first growing season (April 2001). The five stand types are shown as a function of *Avena* density, with and without *E. glaucus* (*E.g.*). Means  $\pm$  SEM, *n*=3.

▲ Aphid densities rose 50- to 800-fold when the exotic grass was present



Fig 4. Feeding preference of *R. padi* apterous adults as determined in petri dish arenas with equal-area foliar tissue samples. Means  $\pm$  SEM.

▲ Aphids preferentially select *Avena* as a host over native bunchgrasses in feeding trials

Fig. 1 Incidence of naturally acquired B/CYDV infection in Yolo County experimental grass stands in late spring of the second growing season (April 2002). Means ± SEM. **a** Incidence in *E. glaucus* grown with three densities of *A. fatua*.



▲ The presence of *Avena* more than doubled the incidence of infection by B/CYDV



Malmstrom et al. (2006) J.Ecol. 94: 264-275

Fig 1. Influence of virus infection on survival (%) of native bunchgrass seedlings, as a function of *Bromus* density (low, high)

Black bars (controls), gray bars (innoculated); percentages above bars indicate relative virus effects

▲ Invasion impact is influenced by the capacity of exotic species to increase the pathogen load on native species with which they compete

# The way forward

- Path analysis? Builds on alternative causal hypotheses
- Scenario building of interactions in a multispecies community:
- → the degree to which changing a causal variable will affect a dependent variable through both direct and indirect pathways

