The ghost of adaptive management

Brendan Wintle

Deputy Director Applied Environmental Decision Analysis (AEDA) Senior ARC Research Fellow University of Melbourne brendanw@unimelb.edu.au +61 3 8344 4572

www.aeda.edu.au

Smart science for wise decisions

Australian Government

Department of the Environment and Water Resources

What is Adaptive Management?

Learning by doing

- Walters, C., and C. S. Holling. 1990. Large-scale management experiments and learning by doing. Ecology **71**:2060-2068.
- Walters, C. J. 1986. Adaptive management of renewable resources. MacMillan, New York, New York, USA.
- 1. Management with a plan for learning
- 2. Trial and Error?
- 3. A coherent strategy for management in the face of uncertainty
- 4. Why so few good examples?

Adaptive management

Linkov et al. 2006 Integ. Env. Ass. Manag't

Wintle, B.A. & Lindenmayer, D. B. (2008) Adaptive risk management for sustainable forestry. For. Ecol. Man

Adaptive management

FROM: Duncan, D., and B. A. Wintle. 2008. Towards adaptive management of native vegetation in regional landscapes. *in* C. Pettit, et al., eds. Landscape Analysis and Visualisation. Springer.

The working examples

...

Acommonwealth Environment Research Facility

One example of Adaptive management in the World!

The American Mallard (Johnson et al 1997)

adaptive management - example

- Alternative models
 - Additive hunting mortality; weak densitydependent recruitment
 - Additive hunting mortality; strong densitydependent recruitment
 - Compensatory hunting mortality; weak density-dependent recruitment
 - Compensatory hunting mortality; strong density-dependent recruitment
- Management options
 - Closed hunting (C)
 - Restrictive hunting (R)
 - Moderate hunting (M)
 - Liberal hunting (L)

Additive hunting mortality; weak density-dependent recruitment

							X2 ^b)					
X1°	1.0	1.5	2.0	2.5	3.0	3.5	1.0	4.5	5.0	5.5	6.0	6.5	7.0
2.0	С	С	С	С	С	С	С	С	С	С	С	С	С
2.5	С	С	С	С	С	С	С	С	С	С	С	С	С
3.0	С	С	С	С	С	С	С	С	С	С	С	С	С
3.5	С	С	С	С	С	С	С	С	С	С	С	С	С
4.0	С	С	С	С	С	С	С	С	С	С	С	С	С
4.5	С	С	С	С	С	С	С	С	С	С	С	С	С
5.0	С	С	С	С	С	С	С	С	С	С	С	С	С
5.5	С	С	С	С	С	С	С	С	С	С	С	С	С
6.0	С	С	С	С	С	С	С	С	С	С	С	R	R
6.5	С	С	С	С	С	С	С	С	R	R	R	R	Μ
7.0	\mathbf{C}	С	С	С	С	С	R	R	R	Μ	М	М	L
7.5	С	С	С	R	R	R	R	М	М	\mathbf{L}	L	L	L
8.0	С	R	R	R	R	М	М	L	L	L	L	\mathbf{L}	L
8.5	R	R	R	М	М	L	L	L	L	L	L	L	L
9.0	R	R	М	L	L	L	L	L	L	L	L	L	L
9.5	М	М	L	L	L	L	L	L	L	L	L	L	L
10.0	М	L	L	L	L	L	L	L	L	L	\mathbf{L}	L	L
10.5	L	L	L	L	L	L	L	L	L	L	L	L	L
11.0	L	L	L	L	L	L	L	L	L	L	\mathbf{L}	L	L
11.5	L	L	L	L	L	L	L	L	L	L	L	L	L
12.0	L	L	L	L	L	L	L	L	L	L	L	L	L

Number of mallards (millions)

Number of ponds in May in Prairie Canada (millions)

Additive hunting mortality; strong density-dependent recruitment

							Х2 ^ь						
X1°	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0
2.0	С	С	С	С	С	С	С	С	С	С	С	С	С
2.5	С	С	С	С	С	С	С	С	С	С	С	С	С
3.0	С	С	С	С	С	С	С	С	С	С	С	С	С
3.5	С	С	С	С	С	С	С	С	С	С	С	С	С
4.0	С	С	С	С	С	С	С	С	С	С	С	С	С
4.5	С	С	С	С	С	С	С	С	С	С	С	С	С
5.0	С	С	С	С	С	С	С	С	С	С	R	R	R
5.5	С	С	С	С	С	С	R	R	R	R	R	R	Μ
6.0	С	С	С	С	R	R	R	R	R	Μ	Μ	М	L
6.5	С	R	R	R	R	R	R	М	Μ	М	L	L	L
7.0	R	R	R	R	R	Μ	М	М	L	\mathbf{L}	\mathbf{L}	L	L
7.5	R	R	R	R	М	М	L	L	L	L	L	L	L
8.0	R	R	М	М	М	\mathbf{L}	\mathbf{L}	\mathbf{L}	L	\mathbf{L}	L	L	L
8.5	R	М	М	М	L	L	L	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}
9.0	R	Μ	М	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}
9.5	М	М	\mathbf{L}	\mathbf{L}	L	L	L	L	\mathbf{L}	L	L	L	L
10.0	М	М	L	L	L	L	L	\mathbf{L}	\mathbf{L}	L	\mathbf{L}	L	L
10.5	М	L	L	L	L	L	L	L	L	L	\mathbf{L}	\mathbf{L}	L
11.0	Μ	L	\mathbf{L}	L	L	\mathbf{L}	\mathbf{L}	L	L	\mathbf{L}	L	\mathbf{L}	\mathbf{L}
11.5	L	L	L	L	\mathbf{L}	L	L	L	L	L	L	L	L
12.0	L	L	L	L	L	L	L	L	L	L	L	L	L

Compensatory hunting mortality; weak density-dependent recruitment

							vob						
-							X20		-				
X1°	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0
2.0	R	R	R	R	R	R	R	R	R	R	R	R	R
2.5	R	R	R	R	R	R	R	R	R	R	R	R	R
3.0	R	R	R	R	R	R	R	R	R	R	R	R	R
3.5	R	R	R	R	R	R	R	R	R	М	М	Μ	Μ
4.0	R	R	R	М	М	\mathbf{M}	м	М	м	м	М	М	М
4.5	М	М	М	М	М	М	М	М	М	М	М	L	L
5.0	М	М	М	М	М	М	М	L	L	L	L	L	\mathbf{L}
5.5	М	М	М	М	L	L	L	L	L	L	L	. L	L
6.0	М	L	L	L	L	L	L	L	L	L	L	\mathbf{L}	\mathbf{L}
6.5	L	L	L	L	L	L	\mathbf{L}	L	L	L	L	\mathbf{L}	\mathbf{L}
7.0	L	L	L	L	L	L	L	L	\mathbf{L}	L	L	L	\mathbf{L}
7.5	L	L	L	L	L	L	L	L	L	L	\mathbf{L}	L	\mathbf{L}
8.0	L	L	L	L	L	L	L	L	L	L	L	L	L
8.5	L	L	L	L	L	L	L	L	L	L	L	L	\mathbf{L}
9.0	L	L	L	L	L	L	L	L	L	L	L	L	\mathbf{L}
9.5	L	L	L	L	\mathbf{L}	L	L	L	L	L	L	L	\mathbf{L} .
10.0	L	L	L	L	\mathbf{L}	L	\mathbf{L}	\mathbf{L}	L	\mathbf{L}	L	L	L
10.5	L	L	L	L	\mathbf{L}	L	L	L	L	L	\mathbf{L}	\mathbf{L}	\mathbf{L}
11.0	L	L	L	L	\mathbf{L}	L	L	L	L	L	L	L	L
11.5	L	\mathbf{L}	L	\mathbf{L}	\mathbf{L}	L	\mathbf{L}	\mathbf{L}	\mathbf{L}	Ľ	L	\mathbf{L}	\mathbf{L}
12.0	L	L	L	L	\mathbf{L}	L	L	\mathbf{L}	L	L	L	L	L

Compensatory hunting mortality; strong density-dependent recruitment

							Х2 ^ь						
X1° -	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0
2.0	R	R	R	R	R	R	R	R	R	R	R	R	R
2.5	R	R	R	R	R	R	R	R	R	R	R	R	R
3.0	R	R	R	R	R	R	R	R	Μ	М	М	Μ	М
3.5	R	R	R	М	М	М	М	Μ	Μ	Μ	Μ	\mathbf{L}	\mathbf{L}
4.0	М	Μ	М	М	М	м	М	L	L	L	L	L	L
4.5	М	М	М	М	L	L	L	L	L	L	L	L	L
5.0	Μ	L	\mathbf{L}	L	L	\mathbf{L}	L	\mathbf{L}	L	L	L	L	L
5.5	L	L	\mathbf{L}	L	L	L	L	L	L	L	L	L	L
6.0	L	L	\mathbf{L}	L	L	L	L	\mathbf{L}	L	L	\mathbf{L}	L	L
6.5	L	L	\mathbf{L}	L	L	L	L	L	L	L	\mathbf{L}	L	L
7.0	\mathbf{L}	L	L	L	L	L	L	L	\mathbf{L}	L	L	L	L
7.5	L	L	L	L	L	L	L	L	\mathbf{L}	\mathbf{L}	\mathbf{L}	L	L
8.0	L	L	L	L	L	L	L	L	L	L	L	L	L
8.5	L	L	L	L	L	L	L	L	L	L	L	L	L
9.0	L	L	L	L	L	L	L	L	L	L	L	Ł	L
9.5	\mathbf{L}	L	L	L	L	L	\mathbf{L}	L	\mathbf{L}	L	L	L	L
10.0	L	L	L	L	L	L	L	L	L	L	L	L	L
10.5	L	L	L	L	L	L	L	L	L	L	\mathbf{L}	L	L
11.0	\mathbf{L}	L	L	L	L	\mathbf{L}	L	L	L	L	L	L	L
11.5	L	L	L	L	L	L	\mathbf{L}	L	L	L	L	L	L
12.0	L	L	L	L	L	L	\mathbf{L}	L	L	L	L	L	L

Adaptive management

Mortality hypothesis	Reproductive hypothesis	Model weights				
		1995	1997	1999		
Additive	Strong density-dependence	0.25	0.53	0.61		
Additive	Weak density-dependence	0.25	0.46	0.38		
Compensatory	Strong density-dependence	0.25	0.00	0.00		
Compensatory	Weak density-dependence	0.25	0.00	0.00		

An Australian Example?

Adaptive biodiversity investment in the GBCMA

Demonstrating Returns on Investment: Australian National Audit Office (ANAO)

What they were saying in 1997	What they said in 2008
It is difficult to determine the extent to which programs are achieving their intended outcomes.	Overall, the ANAO considers the information reported in the DAFF and NHT Annual Reports has been insufficient to make an informed judgement as to the progress of the programs
Performance information is not	towards outcomes
adequate for program managers in DPIE or Environment Australia to determine the quality or the nature of outcomes being achieved	There is little evidence that the programs are achieving the anticipated national outcomes
outcomes being demeved.	Priority should be given to improving the Joint Team's ability to monitor, evaluate and report
Monitoring, review and performance reporting has not been adequate to manage potential risks.	reliably
	(Thanks to Stafan Haikowisz, $\alpha c S c$

(Thanks to Stefan Hajkowicz for paraphrasing)

The NHT problem - summary

- 1. Failed to clearly define [measurable] objectives
- 2. Lack of an explicit model to describe how competing investments options would contribute to outcomes
- 3. Opaque allocation/prioritization strategies
- 4. Failure to demonstrate value for \$ due to lack of monitoring
- 5. No plan for learning (Adaptive Management)

These problems exist at all levels

...But we're not alone

ABC reporter: "Are we winning the war on terror..?"

Adam Dolnik (Centre for transnational crime prevention): *"Well, we have not defined our objectives and we have no metrics for measuring success..."* In short, I don't know.

Adaptive management - GBCMA

FROM: Duncan, D., and B. A. Wintle. 2008. Towards adaptive management of native vegetation in regional landscapes. *in* C. Pettit, et al., eds. Landscape Analysis and Visualisation. Springer.

Adaptive management

Which projects will we fund this year?

Project Prioritization Protocol: V = P*B/C

Project	Success	Benefit	Cost	Value	
	P robability	(Ha)	NPV_{50}	(W*P*B)/C	
Fence Farm A	0.8	50	300K	0.13	
Buy Farm B	0.8	50	1.0M	0.04	
Weed Farm C	0.4	20	700K	0.01	
etc					

Joseph, L. N., R. F. Maloney, S. M. O'Conner, P. Cromarty, P. Jansen, T. Stephens, and H. P. Possingham. 2008: In press. Improving methods for allocating resources among threatened species: the case for a new national approach in New Zealand. Pacific conservation biology.

Adaptive management - GBCMA

FROM: Duncan, D., and B. A. Wintle. 2008. Towards adaptive management of native vegetation in regional landscapes. *in* C. Pettit, et al., eds. Landscape Analysis and Visualisation. Springer.

Monitoring: two components

Reporting:

The performance measure implicit in the goal statements should be monitored in order to report on the success of the management.

Learning:

- 1. What should be monitored becomes apparent by analysing the most uncertain nodes in the Bayes' nets.
- The monitoring information feeds directly back into the Bayes' net to update the conditional probabilities that link each of the nodes in the net. Natural integration of monitoring and models.

The NHT problem - summary

- 1. Failed to clearly define [measurable] objectives
- 2. Lack of an explicit model to describe how competing investments options would contribute to outcomes
- 3. Opaque allocation/prioritization strategies
- 4. Failure to demonstrate value for \$ due to lack of monitoring
- ... No basis for institutional learning (Adaptive Management)

These problems exist at all levels

Conclusions/General Comments

1. Adaptive management is still a highly credible strategy for managing under uncertainty (esp. must act now)

- 2. AM is NOT TRIAL AND ERROR
- 3. Clearly stated, measurable goals are everything [failure to do so is death]
- 4. The Future:

Theory

- Active adaptive management
- Optimal Monitoring

Practice

- Where have all the models gone?
- The sociology of AM, uncertainty and best practice...

Adaptive management

Passive adaptive management

- management strategies evolve over time in response to evidence gathered through monitoring
- competing models are confronted with the evidence and their relative plausibility iteratively updated
- management implemented consistent with the relative merit of competing models.

Active adaptive management

- places a premium on learning.
- management strategies may be nominally suboptimal in a deliberate attempt to identify the best model sooner (learn faster).
- foregoes optimality in the short term in anticipation of long secured through accelerated learning. A Commonwealth Environment Research Facili

Active adaptive management

Only really one tangible, theoretical contribution: McCarthy, M. A., and H. P. Possingham. 2007. Active adaptive management for conservation. Conservation Biology **21**:956–963.

- What action should be taken now to maximise long-run revegetation success, taking into account the gains that can be made through learning?

What proportion of a budget should I allocate to monitoring?

Conclusions/General Comments

1. Adaptive management is still a highly credible strategy for managing under uncertainty (esp. must act now)

- 2. AM is NOT TRIAL AND ERROR
- 3. Clearly stated, measurable goals are everything [failure to do so is death]
- 4. The Future:

Theory

- Active adaptive management
- Optimal Monitoring

Practice

- Where have all the models gone?
- The sociology of AM, uncertainty and best practice...

Reading

6

7

10

2

8

9

12

Adaptive management – Cindy Hauser (University of Melbourne)

www.aeda.edu.au

