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Scaling relations among plant traits are both cause and consequence of processes at organ-to-ecosystem
scales. The relationship between leaf nitrogen and phosphorus is of particular interest, as both elements
are essential for plant metabolism; their limited availabilities often constrain plant growth, and general
relations between the two have been documented. Herein, we use a comprehensive dataset of more
than 9300 observations of approximately 2500 species from 70 countries to examine the scaling of leaf
nitrogen to phosphorus within and across taxonomical groups and biomes. Power law exponents derived
from log—log scaling relations were near 2/3 for all observations pooled, for angiosperms and gymnos-
perms globally, and for angiosperms grouped by biomes, major functional groups, orders or families.
The uniform 2/3 scaling of leaf nitrogen to leaf phosphorus exists along a parallel continuum of rising
nitrogen, phosphorus, specific leaf area, photosynthesis and growth, as predicted by stoichiometric
theory which posits that plants with high growth rates require both high allocation of phosphorus-rich
RNA and a high metabolic rate to support the energy demands of macromolecular synthesis. The general-
ity of this finding supports the view that this stoichiometric scaling relationship and the mechanisms that
underpin it are foundational components of the living world. Additionally, although abundant variance
exists within broad constraints, these results also support the idea that surprisingly simple rules regulate
leaf form and function in terrestrial ecosystems.
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1. INTRODUCTION

Scaling relations among plant traits result from and
impact on a broad range of ecological and evolutionary
processes (Reich er al. 1997; Sterner & Elser 2002;
McGroddy er al. 2004; Wright et al. 2004; Kerkhoff
et al. 2005; Agren 2008). Metabolic, chemical and phys-
ical leaf traits are often quantitatively related, generating
scaling functions between pairs of traits that can be
defined by characteristic slopes and intercepts on a log—
log scale (Reich er al. 1997; Sterner & Elser 2002;
McGroddy er al. 2004; Wright et al. 2004; Kerkhoff
et al. 2005), based on the general scaling relationship
Y=pBX" where X and Y represent two functional
traits of leaves and 8 and « are, respectively, the elevation
and slope of the log-transformed Y versus X regression
curve. The observation that such trait-based relationships
sometimes are conserved (i.e. consistent or invariant) across
ecosystems and biomes that differ dramatically (Reich
et al. 1997; Sterner & Elser 2002; Wright er al. 2004)
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implies the existence of fundamental axes of differen-
tiation in plant strategies and/or convergent scaling
owing to biophysical constraints and evolutionary selec-
tion (Reich er al. 1997; Sterner & Elser 2002;
McGroddy et al. 2004; Wright er al. 2004; Kerkhoff
et al. 2005). The leaf nitrogen (N1) to phosphorus (Py)
relationship is of particular interest, as both elements
are essential for metabolic reactions involved in light cap-
ture, photosynthetic capacity and growth, and their
restricted availabilities often act to limit plant carbon
acquisition and growth (Ericsson & Ingestad 1988;
Reich et al. 1997; Sterner & Elser 2002; Agren 2004,
2008; McGroddy er al. 2004; Wright ez al. 2004; Kerkhoff
et al. 2005; Niklas & Cobb 2005; Elser ez al. 2007). Plant
investment in Ny, relative to Py, varies with differences in
both physiological growth strategies among species and
relative N versus P limitation across local to global scale
soil environments (Walker & Syers 1976; Vitousek
1984; Ericsson & Ingestad 1988; Chadwick et al. 1999;
Westoby et al. 2002; Giisewell 2004; Reich & Oleksyn
2004; Kerkhoff et al. 2005; Niklas 2006; Lovelock ez al.
2007; Townsend ez al. 2007; Agren 2008; Lambers ez al.
2008).

This journal is © 2009 The Royal Society
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While it has been suggested that the strategic allocation
of Ny and Py in plant tissue may follow fundamental stoi-
chiometric rules (Sterner & Elser 2002; Kerkhoff ez al.
2005, 2006; Niklas ez al. 2005; Niklas 2006; Agren
2008), our quantitative understanding of how these two
nutrients are coupled in leaf tissue across biomes and
taxonomic composition variation remains limited despite
recent advances (McGroddy ez al. 2004; Reich & Oleksyn
2004; Han et al. 2005; Kerkhoff er al. 2005, 2006;
Lovelock er al. 2007; Townsend er al. 2007; Watanabe
et al. 2007). Prior work (Sterner & Elser 2002;
McGroddy et al. 2004; Wright ez al. 2004) finding
generally similar Ny, versus Py scaling relations in inde-
pendently evolved lineages and different biomes has led
to suggestions that evolutionary history and degree of
environmental convergence have led to a set of rules
that generally modulate the stoichiometry of nutrients in
plant organs. However, prior studies have shown some
statistically significant differences in the N versus Pp
scaling slopes between woody and herbaceous taxa, as
well as differences in scaling slopes rooted in phylogenetic
history (Kerkhoff ez al. 2006). Moreover, Ny versus Pr.
scaling relations with slopes of 0.75, 0.67, 0.67, 0.72
and 0.70 have been reported in studies with 131 (Niklas
et al. 2005), 745 (Han et al. 2005), 1176 (Wright er al.
2004), 1287 (Kerkhoff er al. 2006) and 3873 (Reich &
Oleksyn 2004) observations, respectively, with significant
differences sometimes noted across taxonomic groups
or geographical locations. Here, we use a larger and more
comprehensive dataset (more than 9300 observations) to
ask whether these previously reported differences are sys-
tematic among major taxonomic groups and/or biomes or
whether a single Ny versus Py scaling fit is common, and
moreover whether results generally can be reconciled with
theories about N versus P scaling.

Given the important role of N in proteins, most par-
ticularly Rubisco that drives photosynthesis, and of P in
rRNA needed to generate and maintain protein levels
vital to cell growth and metabolism, these two elements
have been linked in several stoichiometric growth
models (Elser et al. 2000, 2003; Agren 2004; Niklas
et al. 2005). These models encompass what hereafter we
will call the growth rate hypothesis (GRH) (Elser ez al.
2000, 2003), stating that plants with greater metabolic
and growth rates are disproportionately more P-rich
than N-rich because of allocational shifts in favour of
P-rich rRNA required to support the elevated protein syn-
thesis demands of rapid metabolism and growth. Such
models have been used to predict growth rate differences
when stoichiometric scaling between N and P is assumed
to follow a 3/4-power function (Niklas er al. 2005; Niklas
2006).

While such efforts provide a stoichiometric framework
linking the subcellular ‘machinery’ of protein/ribosomal
metabolism to the observed growth patterns of multi-
cellular organisms (Elser er al. 2000, 2003; Agren 2004;
Niklas ez al. 2005), they have not yet fully resolved stra-
tegic differences in Np—Pp scaling in plants as a
function of local environments, growth strategies, climate
variation or taxonomic grouping. Kerkhoff er al. (2005)
suggested that the GRH could explain the declining
N : P ratios observed from equatorial to high latitude
regions based on abbreviated polar growing seasons.
However, alternative (and possibly complementary)
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hypotheses involving patterns of soil substrate age and
how these vary at continental and biome scales (Walker &
Syers 1976; Vitousek 1984; Chadwick ez al. 1999; Reich &
Oleksyn 2004) are also consistent with empirical evidence.
Moreover, none of these previous studies comprehensively
tested whether Ny versus Py scaling varies among biomes,
as would be predicted by the soil substrate age hypothesis
but not by the GRH.

Herein, we address two important remaining ques-
tions. First is the Ny —Py scaling relationship common
across major plant groups, taxa or biomes? That is,
despite localized and idiosyncratic sources of environ-
mental variation (Agren 2008), are Ny, versus Pp scaling
slopes conserved across major sources of variation?
Second, what is the slope of that relationship and how
does it relate to theoretical predictions?

2. MATERIAL AND METHODS

In this report, we use a leaf trait dataset (540 sources; table 1
in the electronic supplementary material) compiled from pub-
lished studies that include 9356 paired observations of N1 and
P; from a total of approximately 2500 species from 70
countries through six continents, with associated specific leaf
area (SLA) and mass-based net photosynthetic capacity
(Amax) data available for many of these. The dataset has
been contributed as part of a new international ecological
compendium of databases (TRY) and is open to all users
(http:/www.try-db.org/). These observations are an expanded
version of an earlier dataset (Reich & Oleksyn 2004).

We compared data for plants grouped by phylogeny
(angiosperm, gymnosperm), for four functional groups
within the angiosperms, for orders and families within the
angiosperms, and for three different biomes within the
angiosperms. These choices largely reflect practical consider-
ations. The contrasts of angiosperm versus gymnosperm, or
of the four functional groups of different life forms (grami-
noid, herb, shrub and tree) within the angiosperms, were
selected a priori because, among the studied taxa, they rep-
resented the simplest divisions based on important aspects
such as phylogeny and life form that also resulted in sufficient
sample sizes. The dataset included information for 115
gymnosperm species and 2441 angiosperm species. As is
common in cross-species analyses, we used log; data to nor-
malize the distributions and minimize patterns in residuals
(Reich ez al. 1997; Reich & Oleksyn 2004).

Given 6466 observations from 2441 species, the angios-
perm database is largely dominated by among-species
variation, with only an average of two to three replicates
per species. Given this, it is not surprising that relationships
based on species averages for angiosperms were similar to
those resulting from analyses of all observations, which are
those we report in this paper. For instance, using average
values for all 2441 angiosperm species, the relationship of
log N to log P had r® = 0.54, slope of 0.64, intercept of
1.17 and the range of 95% CI from 0.62 to 0.66—all very
similar to relationships for all angiosperm observations
(table 1). By contrast, the gymnosperm observations
(n=2890) are from 115 species, with nine species making
up approximately equal to 2200 of those observations.
Hence, for gymnosperms, the data largely reflect within-
species variation, and we did not further subdivide the data
as we did for angiosperms. The biomes were defined accord-
ing to temperature- and precipitation-based biome
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Table 1. Scaling of leaf nitrogen concentration N in relation to leaf phosphorus concentration Py, for all data pooled, for
plants grouped by phylogeny (angiosperm, gymnosperm), by four functional groups within the angiosperms and by three
different biomes within the angiosperms. (All relations were significant (p < 0.0001). All equations were fit using the log—log
version of the equation: Y = 8 X* Reduced major axis intercepts and slopes (exponents) are shown, as well as the lower and
upper 95% CI of the exponent, and r%. , the number of observations, i.e. unique species-site combinations with data for Np_
and Pp, obtained from same individuals. Significant differences (p < 0.05) in exponents among groups (for appropriate
contrasts separated by blank lines) are shown by the lack of shared letters. Intercepts were not standardized to a common
slope, and thus are not contrasted among groups. Biomes were broadly defined, such that temperate includes temperate and

boreal; and moist tropical is both wet and moist tropical and subtropical.)

plant group n intercept exponent low CI high CI r

all 9356 1.113 0.676 0.658 0.694 0.37
divisions

angiosperm 6466 1.166 0.637 a 0.621 0.653 0.48
gymnosperm 2890 1.002 0.696 a 0.650 0.746 0.22
angiosperm functional groups

graminoid 699 1.105 0.688 a 0.631 0.751 0.42
forb 1072 1.127 0.664 a 0.595 0.742 0.23
shrub 1518 1.155 0.652 a 0.624 0.682 0.56
trees 2878 1.195 0.633 a 0.610 0.658 0.48
biomes

temperate 3147 1.134 0.686 a 0.641 0.734 0.21
Mediterranean 714 1.143 0.655 a 0.623 0.689 0.68
moist tropical 1866 1.203 0.651 a 0.614 0.690 0.38

classifications and on the descriptions provided by the
authors of the original publications. Not all observations
had sufficient information to be placed into a biome category.
Biomes included moist tropical (including subtropical),
Mediterranean, temperate (including boreal), desert and
dry tropical. Sufficient data were available only to evaluate
relationships for the first three. Moist tropical, Mediterra-
nean and temperate data were obtained from 26, 10 and 43
countries, respectively. We did not use data for fertilized
plants, planted, urban or polluted sites.

A subset of these observations also included data on other
leaf traits such as SLA and net photosynthetic capacity.
Photosynthetic capacity is defined as the maximum photo-
synthetic rate per unit leaf mass measured under ambient
CO, concentrations and saturating irradiance (Reich ez al.
1997), and operationally measured in the field in mid-
morning under optimal moisture and temperature conditions.
Here, SLA is defined as the one-sided projected area of foliage
per unit dry mass (Reich ez al. 1997).

We used standardized major axis regression (Falster er al.
2003; Warton et al. 2006) to compare scaling exponents
within and among plant groups and biomes. We also used
‘funnel’ graph analyses to evaluate the dependence of the
observed scaling slopes on sample size (Palmer 1999; Wright
et al. 2005). The strength of bivariate trait relationships was
quantified with standard correlation and ordinary least-squares
regression statistics in conjunction with standardized major axis
slopes (also known as reduced major axis, or reduced major axis
(RMA) slopes). A standardized major axis fit is the line
minimizing sums of squares in X and Y dimensions simul-
taneously; and these routines were run using the SMTR
computer package (Falster er al. 2003). In this program,
heterogeneity between RMA slopes is tested via a permutation
test. Where deemed non-heterogeneous, a common RMA
slope is estimated using a likelihood-ratio method and
differences in elevations (i.e. the intercepts) are then tested.
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3. RESULTS AND DISCUSSION

Among all observations, Ny varied 32-fold and P by 200-
fold, with the mean (10th, 90th percentiles) of Ny and Pp.
being 17.1mgg ! (9.3, 27.0) and 1.57 mg g~ ! (0.6, 2.7).
For all species and sites pooled (n = 9356), Nt increased
with Py (p < 0.001, ? =0.37; figure 1 and table 1),
with  the scaling exponent=0.676 (95% CI,
0.658-0.694). We found strong support for the hypothesis
that the Ny versus P; scaling slope is conserved across the
two major taxonomic plant groups, despite the relationship
being of modest strength. For both angiosperms and gym-
nosperms, the scaling exponents were close to 2/3
(table 1). Given the greater sampling of angiosperms
across a wider range of species, functional groups and
biomes than for gymnosperms, and the dominance (75%
of all observations) of nine species within the gymnosperm
data, we focus on angiosperms hereafter. Among the four
major functional groups within the angiosperms, the Nt
versus P; scaling exponents were again close to 2/3, with
a narrow range of scaling exponents—from 0.63 in trees
to 0.70 in graminoids. The 95% CI of slopes included
the 2/3 value for all data pooled, within divisions, or
within angiosperm functional groups. There was also simi-
lar Ny versus Pr scaling across biomes (table 1), with the
scaling exponent very near to 2/3 in temperate, Mediterra-
nean and tropical biomes.

To assess whether Ny versus Py scaling is similar at
narrower phylogenetic scales, we focussed at the order
and family levels. There are 75 angiosperm orders rep-
resented in the dataset. The mean of the Ny, versus Pr
RMA slope for the 50 orders with a sample size greater
than 10 was again close to 2/3 (figure 2). The distribution
of the RMA slopes among orders was broad (similar to a
prior report of phylogenetic variation in this slope;
Kerkhoff er al. 2006); however, a ‘funnel plot’ assessment
of the slope in relation to the sample size indicates that
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Figure 1. Relationships of leaf N (N ) to leaf P (Pr) for all data pooled, and for plants grouped by both phylogeny (angiosperm,
gymnosperm) and life form within the angiosperm group. The details of these relations using reduced major axis (RMA)

regressions are presented in table 1.

much of the variation in the RMA slope results from low
sample size (figure 2). As the number of observations per
order increases, the slopes converge around the mean
(approx. equal to 2/3).

Although it is hypothetically possible that changes in
the heterogeneity of slope with sample size represent
increasingly greater convergence in Ny versus Py scaling
in orders with larger numbers of species represented in
the dataset (as if, for example, more species occurred in
more recently diverged lineages, and Ny versus Py scaling
also converged over time), we argue that a statistical
explanation is the most parsimonious. The data support
three straightforward predictions regarding how analyses
of unbiased data should vary with sample size (Palmer
1999). As sample size decreases, the variation about the
‘true’ effect (in this case, the scaling slope) should
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increase owing to increased sampling error; figure 2
shows this to be true. Second, the average scaling slope
should be independent of sample size: this was also true
(data not shown); and third, regardless of sample size,
individual slopes should exhibit a normal distribution
about the true mean slope, which was true (p < 0.0001).

Hence, the average of RMA slopes of Ny versus Pr.
relations within individual angiosperm orders is similar
to the slope of all taxa pooled or among all angiosperms
within any biome or life form, and these values are
quite close once sample sizes become sufficient. Similar
results were found in examining frequency distribution
and funnel plots of N versus P; scaling relations
among the 62 angiosperm families in the dataset (data
not shown). Given the strong convergence in scaling
slopes across biomes, major taxonomic and functional
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Figure 2. Relationship between the scaling exponent (the
RMA slope) of the Ny —Pp relationship and the sample
size, for 50 angiosperm orders (closed circles). The mean
(0.667) and 95% CI for the scaling exponent are shown in
the solid and dashed lines. The mean for the gymnosperm
order ‘Pinales’ is shown in the open circle for comparison.

groups, and among orders and families when sampling is
robust, it is likely that some fraction of reported variance
in slopes among biomes, studies or plant groups in earlier
publications probably arose from relatively small sample
sizes.

Now, we evaluate whether the GRH prediction of
consistent allometric (rather than isometric) scaling
of Ny —Py is consistent with greater scaling exponents
for Py, than Ny in relation to growth rate surrogates
SLA and A, (Lambers & Poorter 1992; Nielsen ez al.
1996; Reich & Oleksyn 2004). This prediction is based
on the reasoning that plants with high growth rates will
require both an increased allocation of P-rich RNA
(Elser et al. 2003) and an increased metabolic rate to sup-
port the energy demands of macromolecular (protein,
rRNA) synthesis. SLA and A,,., are appropriate surro-
gates for growth rate as both have been shown to
correlate with total plant growth rate (Lambers & Poorter
1992; Nielsen er al. 1996; Reich et al. 1997) and
by definition are positively related to energy capture
(light interception and CO, fixation, respectively) per
unit leaf mass.

The relationships are consistent with the line of
reasoning derived from the GRH, as for all angiosperms
(figure 3), or for divisions of the data sorted by functional
groups or by biomes (table 2), the scaling of Py to SLA
always had a greater slope than the scaling of N to

Figure 3. (Opposite.) Relationship of leaf N (Np) and leaf P
(Pp) to specific leaf area and net photosynthetic capacity
(Amass) for all angiosperm data pooled. (a) For leaf N (N)
and (b) leaf P (Pp), the relationships to specific leaf area
(SLA) were log Np = —0.326 4+ 0.759 (log SLA); n=
1819, * = 0.54, p < 0.0001; and log P;. = —2.28 + 1.141
(log SLA); n= 1819, r* =0.45; p < 0.0001. Statistics for
specific leaf area relations for subgroups and biomes are
listed in table 2. (¢) For leaf N (Np) and (d) leaf P (Py),
the relationships to net photosynthetic capacity were log
Np = —0.090 + 0.681 (10g Amass); 7= 391, > =0.37, p <
0.0001; and log Py = —2.21 4+ 1.131 (log Amass); 7= 391,
> =0.30; p < 0.0001.
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Figure 3. (Caption opposite.)
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Table 2. Scaling relationships for angiosperms of leaf nitrogen concentration Ny, and leaf phosphorus concentration Py in
relation to SLA for all data pooled, for plants grouped by life form and for three biomes. (All relations were significant (p <
0.0001). All equations were fit using the log—log version of the equation: Y= 8 X“. Reduced major axis slopes (exponents)
are shown, as well as the lower and upper 95% CI of the exponent, and 2. n, number of observations. Significant differences
(p < 0.05) in exponents among groups (for appropriate contrasts separated by blank lines) are shown by the lack of shared

letters.)

NL PL
plant group n exponent low CI, high CI r exponent low CI, high CI r
all 1819 0.76 0.73, 0.79 0.54 1.14 1.08, 1.12 0.45
angiosperm functional groups
graminoid 34 0.59 a 0.41, 0.85 0.52 1.17 a 0.81, 1.69 0.51
forb 22 0.72 a 0.33, 1.56 0.34 1.01 ns
shrub 535 0.83 a 0.76, 0.89 0.55 1.19 a 1.08, 1.31 0.45
trees 1112 0.75 a 0.70, 0.80 0.45 1.17 a 1.09, 1.26 0.39
biomes
temperate 449 0.67 a 0.59, 0.76 0.35 0.95a 0.80, 1.12 0.24
Mediterranean 321 0.93b 0.83, 1.03 0.54 1410 1.26, 1.58 0.49
moist tropical 950 0.78 a 0.71, 0.85 0.34 1.21 ab 1.08, 1.35 0.24

SLA, usually by approximately equal to 0.4 units. Similarly,
higher slopes of P to photosynthetic capacity, than Ny to
photosynthetic capacity, were also observed (figure 3).
These slope differences (for Ni and Pp in relation to the
growth rate surrogates) translate to the 2/3 scaling of Ny —
P observed within and among taxa and biomes (table 1).
It is notable though that this dataset includes differences
in Np, Py and growth rate that result both from species
differences (e.g. intrinsically fast versus slow-growing
taxa) and from site differences (e.g. soils relatively poorer
in P or N), but cannot differentiate among these.

These analyses suggest that the scaling of Ny —Py_is best
described as a 2/3-power law function, long ago proposed
for metabolic scaling as a result of area-to-volume allome-
try. The Ny —Py scaling is closely associated with different
relations of mass-based nutrient concentrations (i.e. Np,
Pp) to SLA, which by definition therefore involve contrast-
ing area—mass relations. Light harvesting and gas fluxes
can be considered area-based phenomena that impact the
economics of investments of elements (C, N and P) quan-
tified per unit mass. Given that P-rich rRNA is critical to
the maintenance of protein pools (econometrically quanti-
fied on a mass basis) that in turn influence the rate at
which harvested light (for which SLA is a useful surrogate)
is used to fix diffused CO,, the coupling of area-to-mass
processes may play important roles in controlling the scal-
ing slope, consistent with the recent scaling theory
regarding hydraulic and mechanical constraints on leaf
architecture (Niklas er al. 2009).

4. SUMMARY

Our results show that Ny versus P; power law scaling
averages approximately equal to 2/3 in angiosperms and
gymnosperms, and also averages approximately equal to
2/3 for angiosperms whether examined for closely related
(families or orders) or distantly related (all angiosperms)
taxa, among four different life forms, or in differing
biomes. Moreover, scaling slopes converged around the
2/3 value whenever sample sizes were large. The general-
ity of this finding supports the view that this
stoichiometric relationship and the mechanisms that
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underpin it are foundational components of the living
world (Elser et al. 2000, 2003; Agren 2004; Kerkhoff
et al. 2006). Additionally, although abundant variance
exists within the broad constraints, these results also sup-
port the idea that surprisingly simple rules govern leaf
form and function in all corners of the terrestrial world.

This work was supported by the National Science Foundation.
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