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Correlations among leaf traits provide a significant constraint
on the estimate of global gross primary production
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[1] Current estimates of gross primary productivity (GPP)
of the terrestrial biosphere vary widely, from 100 to 175 Gt
C year™'. Ecosystem GPP cannot be measured directly, and
is commonly estimated using models. Among the many
parameters in those models, three leaf parameters have
strong influences on the modelled GPP: leaf mass per area,
leaf lifespan and leaf nitrogen concentration. The first two
parameters affect the modelled canopy leaf area and the last
two determine the maximal leaf photosynthetic rate. Eco-
logical studies have firmly established that these three
parameters are significantly correlated at regional to global
scales, but this knowledge is yet to be used in predicting
global GPP. We hypothesize that incorporating multi-trait
covariance can reduce uncertainties of model predictions in a
way likely to provide improved realism. Using the Austra-
lian community land surface model (CABLE), we find that
correlations among these three parameters reduce the vari-
ance among GPP estimates by CABLE by over 20% for
shrub, C4 grassland and tundra, and by between 5% and
20% for most other PFTs, as compared with the simulated
GPP without considering the correlations. Globally the cor-
relations do not alter the mean but reduce the variance of
modeled GPP by CABLE by 28% and result in fewer
extremely high or extremely low (and unlikely) global GPP
predictions. Therefore correlations among the three leaf
parameters, and possibly other parameters, can be used as a
significant constraint on the estimates of model parameters
or predictions by those models. Citation: Wang, Y. P., X. J.
Lu, I. J. Wright, Y. J. Dai, P. J. Rayner, and P. B. Reich (2012),
Correlations among leaf traits provide a significant constraint on
the estimate of global gross primary production, Geophys. Res.
Lett., 39, L19405, doi:10.1029/2012GL053461.

1. Introduction

[2] Each year photosynthesis by the land biosphere fixes
about one sixth of total atmospheric CO, and a similar
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amount is released back to the atmosphere by respiration.
Because these two fluxes occur simultaneously it has not
been possible to measure photosynthesis separately from
respiration in the field at ecosystem scale. The gross primary
production (GPP) of the land biosphere defined as the total
amount of carbon fixed by photosynthesis can be estimated
using various approaches. Process-based models calculate
GPP using either the biochemical model of leaf photosyn-
thesis [see Farquhar et al., 1980] or the light use efficiency
model [Turner et al., 2006]. Another approach is to use the
relationships between various environmental variables and
GPP derived from eddy flux measurements [e.g., Beer et al.,
2010]. A third approach is to use other tracers, such as oxy-
gen isotopes in CO, or carbonyl sulfide, to infer GPP of
the terrestrial biosphere [see Campbell et al., 2008; Welp
et al., 2011]. Because of the large uncertainties in both the
process-based and empirical models, GPP predictions
obtained by the first approach vary widely, e.g. from 100 to
150 Gt C year ' [Piao et al., 2010]. Using the second
approach, Beer et al. [2010] estimated global annual GPP to
average 123 + 8 Gt C year ' between 1990 to 2008, which is
far lower (and indeed inconsistent) with the very recent
estimates of 150 to 175 Gt C year ', made by Welp et al.
[2011] using the third approach.

[3] Total canopy leaf area and maximum photosynthetic
rate (photosynthetic “capacity”) are two major drivers of
GPP for terrestrial ecosystems [see Schulze et al., 1994;
Reich, 2012]. Photosynthetic capacity is closely related to
leaf nitrogen per unit leaf area that is the product of leaf
nitrogen concentration, # in g nitrogen/g dry matter and leaf
mass per unit area m in g dry matter m~?) [Evans, 1989;
Reich et al., 1997]. Total canopy mass is largely a function of
the fraction of plant carbon allocated to leaves, and of leaf
lifespan [Reich et al., 1992]. In turn, total canopy leaf area is
a function of canopy mass and leaf mass per area. Over the
last decade or so, globally-consistent correlations have been
demonstrated among leaf N concentration (n), leaf lifespan
(7) and leaf mass per area (m) [Reich et al., 1997; Wright
et al., 2004]. They are: 7 and m being positively correlated,
and both 7 or m being negatively correlated to n. Because
these three traits are key parameters in global models for
estimating GPP, we expected that their correlations would
help us narrow down the range of estimates of GPP for
different plant functional types (PFTs) and globally. This
had not been explored before. We hypothesize that this can
be useful in a modelling context because most studies on
parameter estimation using global land models have
assumed, a priori, that model parameters are independent,
and showed that current observations can constrain only a
small fraction of the large numbers of parameters in those
models [Rayner et al., 2005; Wang et al., 2009; Ziehn et al.,
2011]. If instead, incorporating multi-trait covariance can
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reduce uncertainties of model parameter estimates, predic-
tions made by models may have improved realism, as cap-
tured by reduced variance in those predictions.

[4] The objectives of this study are (1) to quantify the
degree to which correlations among the three leaf traits
constrain GPP estimates for different PFTs, individually and
in total; (2) to quantify the probability of global GPP being
150to 175 Gt C year*1 at present. We used a process-based
global land surface model, the Australian community land
surface model (CABLE) to estimate GPP. While keeping all
other model parameters unchanged, we use CABLE to
compute GPP for given values of three leaf traits (7, m, n)
that are generated using a random number generator with or
without taking account of the correlations. By comparing the
differences in variance of the estimated GPP for the uncor-
related or correlated values of three leaf traits, we can esti-
mate how much the correlations among the three leaf traits
can reduce the uncertainties of the estimated GPP for dif-
ferent PFTs, or globally.

2. Method

[s] The CABLE model (see Kowalczyk et al. [2006] and
Wang et al. [2010, 2011] for further details) is used to sim-
ulate GPP. In CABLE the vegetation is divided into 10 dif-
ferent PFTs based on the 1° by 1° International Geosphere
and Biosphere Program vegetation classification [Loveland
et al., 2000]. The meteorological forcing from the global
soil wetness project Il (GSWPII) [see Dirmeyer et al., 2006]
for 1990 was used as input to CABLE. Values for vegetation
and soil model parameters used in this study are listed in
Kowalczyk et al. [2006] except m, T and n.

[6] Using the means, variance of means and co-variances
of the three leaf parameters as estimated for each of 10 PFTs
based on the GLOPNET dataset [Wright et al., 2004] (see
Table S1 in Text S1 of the auxiliary material), we used a
random number generator to generate 500 different combi-
nation of m, T and n by either setting all covariances to zero
(“uncorrelated case”) or using the covariances from the
observed data (see Table S1 in Text S1), the “correlated
case”.! Here variance of a model parameter is estimated as
the standard deviation of the mean, or standard error of
observations for the corresponding leaf trait.

[7] To generate a random realization of each parameter set,
we constructed a covariance matrix C using the prescribed
correlations and variances (see Table S1 in Text S1). A
matrix is calculated as such that C = M"M. M is often called
matrix square root of C, and may not be unique. Here we

calculated it as M = v/AY where /A is a diagonal matrix of
the eigen-values of C and Y the corresponding eigen-vectors.
We generate a realization v; = ¥y + MZ where ¥, the vector
of estimated trait values and 7 a vector of independent uni-
variate normal random numbers. It can be shown that the
population mean and covariance of these realization are v,
and C respectively.

[8] For each of 500 combinations, we ran CABLE by
recycling the meteorological forcing from GSWPII for 1990
until annual GPP at every land cell reached its steady state
value, which is defined as the difference in GPP between two
successive runs is less than 0.01% for any land point. All

'Auxiliary materials are available in the HTML. doi:10.1029/
2012GL053461.
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estimates of GPP presented in this paper are steady state
annual values.

3. Dependence of GPP on the Leaf Traits

[9] Gross primary production, GPP depends on canopy leaf
area, and maximum carboxylation rate (Vomax) and maximum
rate of potential electron transport ( j,..«) at a leaf temperature
of 25°C. Canopy leaf area in CABLE is modelled as

d(Lm)
dt

=/iNPP[c — Lm/7fr (1)

where L is canopy leaf area index, m is the leaf mass per area (g
dry matter m™~2), NPP is net primary production (g C m—>d "),
c is the carbon fraction of dry biomass (=0.5 in this study), f;
is the fraction of NPP allocated to leaf and depends on leaf
phenology [see Wang et al., 2010], fr is the function
describing the dependence of leaf lifespan on leaf tempera-
ture [see Wang et al., 2010]. Here we estimated the mean leaf
turnover rate constant as the inverse of leaf life span, or 1/7.
NPP is estimated as

NPP = GPP(L, Vemaxjmax) — R (L, mn) — Ry 2)
where R, and R, are the maintenance and growth respiration
of leaf, wood and roots.

[10] Parameters vemax and jax are estimated as a function
of leaf nitrogen per unit leaf area. That is

Vemax = @ + bmn (3)

jmax = 2chax (4)

where a and b are two empirical coefficients with the values
from Kattge et al. [2009] for different PFTs except C4 plants
and tundra. We used the values of a and b of C3 grass as no
estimates were provided by Kattge et al. [2009] for C4 plants,
and values of Shrub for Tundra (see Table S2).

[11] In CABLE, GPP and Ry, are calculated hourly, R, is
calculated daily. Equation (1) is integrated forward at daily
time step.

[12] Total variance of the simulated GPP is calculated for
each land cell, each PFT or globally. The total variance of
GPP can also be decomposed into the contribution of vari-
ance from each leaf trait and the covariance among three leaf
traits (see Text S1 in Text S1). For the uncorrelated case, the
covariance always is zero.

4. Results

[13] We evaluated the variance and co-variance terms for
each PFT by computing the first derivatives using the finite
difference method. The covariance is negative for all PFTs
(see Figure 1), suggesting that taking the correlation struc-
ture into account will reduce the uncertainty of the estimated
GPP for all PFTs. The absolute reduction in total variance
due to the correlations is relatively larger for deciduous
needleleaf forest, C3 and C4 grasslands than other PFTs.
However the results as shown in Figure 1 are quantitatively
accurate only around mean GPP for each PFT, and can be
biased for other values of GPP if the first derivatives in
equation (S3) vary with the independent variables. In the
following, we will present the mean and variance of the
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Figure 1. Total variance, variance and covariance of the estimated mean GPP for different plant functional types as calcu-
lated using equation (S3). See Table S1 in Text S1 for the definitions of all acronyms in the x-axis label.

simulated GPP by CABLE from 500 sets of leaf trait values,
for both the correlated or uncorrelated cases.

[14] The global pattern of the mean GPP as calculated by
CABLE for the uncorrelated case (see Figure 2a) is quite
similar to Beer et al. [2010] using empirical models (see
Figure 2b) except evergreen needle leaf forest, C3 crops and
barren land. The mean GPP as estimated by CABLE for the
uncorrelated case is quite similar to those for the correlated
case for all 10 PFTs. The tropical evergreen forest has the
highest mean annual GPP, about 3200 g C m~? year ',
similar to the estimate by Kattge et al. [2009] or Beer et al.
[2010] (see Figure 2b).

[15] As compared with the estimates of Beer et al. [2010]
for evergreen needle leaf forest and C3 crop, the differences
in the mean GPP largely result from the differences in the
mean leaf lifespan. The arithmetic mean leaf life span as
estimated by Wright et al. [2004] is 3.78 years for evergreen
needle leaf forest and 0.29 years for C3 crop (see Table S1 in
Text S1), as compared with 2 years and 0.46 years as the
default values in CABLE that was calibrated using the GPP
estimates of Beer et al. [2010]. The relative differences
between the default values in CABLE and the means of those
three leaf traits from Wright et al. [2004] often are largest for
7. In general, the default values of 7 in CABLE are smaller
for forest types, and larger for other vegetation types than
those from Wright et al. [2004].

[16] However the uncertainties of the estimated GPP are
quite large, particularly for the regions in Brazil, Central Africa
and south China, and south-east USA (see Figure 3a), where
the mean GPPs also are quite high (>1200 g C m™2 year ')
(see Figure 2a). Therefore the uncertainties in the estimated
GPPs in those regions contribute to a significant fraction
(>40%) of the total variance of global GPP for the uncorrelated

case. If the correlations among the three leaf traits are con-
sidered, the variance of simulated GPP by CABLE is reduced
by more than 50% for some shrub lands in Northern Australia
and South Africa, or by more than 20% for most tropical C4
grassland in South America, Africa and Australia, as well as
tundra at northern high latitudes (see Figure 3b). The reduction
in variance by taking into account the correlations among the
three leaf traits is significant at 99% level for much of the
global land surface (see Figure 3c).

[17] Figure 4 (top) shows that the frequency distribution of
global GPP estimates from the uncorrelated case is higher
than that from the correlated case at GPP > 160 Gt C year ™'
or <130 Gt C year ', and is lower than that from the corre-
lated case at GPP between 130—145 Gt C year'. Overall the
correlations among the three leaf traits reduce the variance of
estimated global GPP by CABLE by 28%. The global GPP
for the uncorrelated case is 137.3 + 9.2 Gt C year ', as
compared to 137.5 + 7.8 Gt C year™ ' for the correlated case
as simulated by CABLE.

[18] For different PFTs, the correlations among the three
leaf traits reduces the total variance of the estimated GPP by
CABLE by over 20% for shrub, C4 grassland and tundra, and
by 5% to 20% for evergreen broadleaf forest, deciduous
broadleaf forest, C3 grass, cropland and barren land. The
variance reduction from the correlations is quite large for C4
grasslands that only have very few observations of three leaf
traits. As a result, the variance of the estimated GPP is still
quite large for the correlated case (211 g C m ™2 year ).

[19] Our results (Figure 2b and Figure 4, bottom) show that
the correlations among the leaf traits reduce the total variance
of the estimated GPP but only have small influences on the
mean of estimated GPP by CABLE for all different PFTs and
global land biosphere. However the reduction in the total
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Figure 2. (a) The mean estimate of the simulated GPP by CABLE for the uncorrelated case, and (b) mean GPP of different
plant functional types for the correlated and uncorrelated cases in comparison with the results from Beer et al. [2010].

variance of GPP for each PFT as shown in Figure 4 (bottom)
is much larger than that in Figure 1b, because the relationship
between GPP and each of the three leaf traits is nonlinear.

5. Implications

[20] Using the observed mean, variance and the correla-
tions among the three key leaf traits for canopy photosyn-
thesis, we simulated that global GPP of land biosphere is
137.5 & 7.8 Gt C year ', which is higher than the estimated
GPP by CABLE using default values for the three leaf traits.
However the estimated mean GPP in this study is not statis-
tically significantly different from the estimate of Beer et al.
[2010] using empirical models, but is significantly lower than
the best estimate of 150 to 175 Gt C year ' by Welp et al.

[2011]. Based on our results, the probability is less than 9%
for GPP being from 150 to 175 Gt C year ', and would be
even lower if all other parameters in CABLE were recali-
brated against the GPP estimates of Beer et al. [2010]. A full
analysis of the uncertainty of GPP for different PFTs or
global land biosphere will need to bring in additional con-
straints, such as latent heat flux and leaf area index. This will
be explored in the future.

[21] Results from this study have several implications. The
first one is that our results provide further support for the
need of developing a trait-based classification of PFTs for
global land surface models, as advocated by Reich et al.
[2007]. Global land surface models use plant functional
types to represent different land surface types, and each plant
functional type is given a set of values for different model
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Figure 3. (a) Variance of the estimated mean GPP for the uncorrelated case in (g CPm™ yearfz, (b) fractional reduction in
the variance when the correlations among the three leaf traits are considered and (c) the region with variance reduction being
significant at 10%, 5% or 1% levels (F test).
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Figure 4. (top) Frequency distribution of the simulated global GPP by CABLE for the correlated and uncorrelated case
(in Gt C year '), and (bottom) the fractional reduction in the variance of the estimated GPP for different plant functional types.

parameters, including the three parameters we studied here.
Because of the large number of model parameters and their
uncertainties, those models have high degrees of freedom,
which makes model calibration quite difficult and predictions
by those models are highly uncertain. By taking into account
the known correlations among different model parameters
we can thus reduce the degrees of freedom in the model
parameter space as well as the uncertainty associated with
model predictions, therefore PFT-specific effects on model
output can then be better distinguished from another in global
land surface modeling. The second type of implication is that
use of covariance among key leaf traits can reduce uncer-
tainties of model parameter estimates and predictions by
those models. Most studies on parameter estimation using
global land models have assumed, a priori, that model param-
eters are independent, and found that current observations
can be used to constrain only a small fraction of the large

numbers of parameters in those models [Rayner et al., 2005;
Wang et al., 2009; Ziehn et al., 2011]. On the other hand,
field observations of key leaf traits are quite comprehensive
as in the GLOPNET and other datasets [see Wright et al.,
2004; Kattge et al., 2011.]. There is an increasing trend
towards firmly establishing at regional to global scales the
general relationships among key functional traits of plants
[e.g., Reich et al., 1997; Wright et al., 2004; Cornwell et al.,
2008, 2009; Chave et al., 2009]. Results from this study
suggest that correlations among the three leaf traits, and
possibly other traits [see Ziehn et al., 2011] can be used as a
significant constraint on the estimates of model parameters
or predictions by those models to regional to global scales.
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