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Abstract. Knowledge of leaf chemistry, physiology, and life span is essential for global
vegetation modeling, but such data are scarce or lacking for some regions, especially in
developing countries. Here we use data from 2021 species at 175 sites around the world from
the GLOPNET compilation to show that key physiological traits that are difficult to measure
(such as photosynthetic capacity) can be predicted from simple qualitative plant
characteristics, climate information, easily measured (‘‘soft’’) leaf traits, or all of these in
combination. The qualitative plant functional type (PFT) attributes examined are phylogeny
(angiosperm or gymnosperm), growth form (grass, herb, shrub, or tree), and leaf phenology
(deciduous vs. evergreen). These three PFT attributes explain between one-third and two-
thirds of the variation in each of five quantitative leaf ecophysiological traits: specific leaf area
(SLA), leaf life span, mass-based net photosynthetic capacity (Amass), nitrogen content (Nmass),
and phosphorus content (Pmass). Alternatively, the combination of four simple, widely
available climate metrics (mean annual temperature, mean annual precipitation, mean vapor
pressure deficit, and solar irradiance) explain only 5–20% of the variation in those same five
leaf traits. Adding the climate metrics to the qualitative PFTs as independent factors in the
model increases explanatory power by 3–11% for the five traits. If a single easily measured leaf
trait (SLA) is also included in the model along with qualitative plant traits and climate metrics,
an additional 5–25% of the variation in the other four other leaf traits is explained, with the
models accounting for 62%, 65%, 66%, and 73% of global variation in Nmass, Pmass, Amass, and
leaf life span, respectively. Given the wide availability of the summary climate data and
qualitative PFT data used in these analyses, they could be used to explain roughly half of
global variation in the less accessible leaf traits (Amass, leaf life span, Nmass, Pmass); this can be
augmented to two-thirds of all variation if climatic and PFT data are used in combination with
the readily measured trait SLA. This shows encouraging possibilities of progress in developing
general predictive equations for macro-ecology, global scaling, and global modeling.
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INTRODUCTION

Foliage attributes such as leaf structure, nutrient

content, and net photosynthetic capacity are key

determinants of carbon dioxide and water vapor fluxes

between vegetation and the atmosphere at every

temporal and spatial scale and of biogeochemical cycles

that link soil, climate, and atmosphere at the same

scales. Thus, the ability to characterize key leaf

functional traits such as photosynthetic capacity for

species and communities at regional, continental, and

global scales is important for a variety of scientific

disciplines, including global biogeography and macro-

ecology (Diaz et al. 2004), as well as for vegetation,

carbon balance, and land surface models (e.g., Haxeltine

and Prentice 1996, Bonan et al. 2003, Sitch et al. 2003)

such as those used to predict responses to changes in

land use, atmospheric chemistry, and climate.

Many ecosystem process models simplify real vegeta-

tion by dividing species into categories called ‘‘plant

functional types’’ (PFTs). Leading models include the

Sheffield, LPJ, and NCAR dynamic global vegetation

models (Woodward et al. 1995, Bonan et al. 2003, Sitch

et al. 2003, Woodward and Lomas 2004) and biogeo-

graphic and biogeochemical models such as BIOME4

(Kaplan et al. 2003) and BIOME-BGC (White et al.

2000). In these models, each PFT has a particular set of

traits and makes up a particular proportion of the

vegetation at a site. But recent progress in understanding

ecological strategy variation across plant species (Reich

et al. 1997, 2003, Wright et al. 2004) suggests

possibilities for building new vegetation schemes that

are conceptually cleaner, computationally easier, and

underpinned by richer data and that express trait

variation more satisfactorily.

Variation across species in most ecologically impor-

tant traits is naturally continuous rather than divided

into classes. Further, although traits such as leaf life span

or mass-based leaf nitrogen content differ on average

between herbs, grasses, and woody plants, there is wide
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spread within categories and broad overlap between

them (Reich et al. 1997, Wright et al. 2004). Similarly,
comparisons between habitats often show overlapping

ranges of trait values, despite different averages. Thus,
an alternative to using PFTs in vegetation models would

be to describe trait variation among sets of coexisting
species with a mean and an index of spread for each trait.

Although a wealth of gas exchange data has been
published, there is an inevitable bias towards econom-
ically important species in developed regions of the

world, with few data available from some less developed
regions (Wright et al. 2004, but see Han et al. 2005, He

et al. 2006). This imbalance is a potential limitation to
the generality of global models of land surface processes.

Our objective in this paper is to advance our capacity to
predict patterns of variation in leaf traits, with a view to

improving coverage for regions where ecophysiological
data are scarce. We ask whether well-known qualitative

characteristics of species, which are often used to define
plant functional groups, provide a useful foundation for

making such predictions, particularly when combined
with other widely available data, such as climate data.

Second, we ask whether these qualitative plant charac-
teristics are more poorly, similarly, or better related to

plant ecophysiological traits than are climate variables,
which are also generally more widely available than
ecophysiological data. Third, we ask whether the

addition of information about an easily obtained leaf
trait, specific leaf area (SLA), to the PFT and climate

data allows substantial improvements in ability to
predict the less accessible traits such as gas fluxes,

chemistry, and leaf life span. If so, this would suggest
that coordinated programs to measure SLA could be

used to improve global data bases about leaf physiology
in general. We focus on SLA because this trait, besides

being easy to measure, is a strong (positive) correlate of
the photosynthetic capacity and potential relative

growth rate of plants and inversely related to the degree
of physical defense of a leaf (Reich et al. 1991, 1997,

Wright and Westoby 2002, Cornelissen et al. 2003).
We used the Global Plant Trait Network (GLOP-

NET) database (Wright et al. 2004, 2005) to assess
several alternative approaches to estimating photosyn-

thetic capacity, leaf life span, leaf nitrogen content, and
leaf phosphorus content from more easily obtained and

more widely available data. This database covers 2222
species from 175 sites on six continents. The present
paper builds on previous work that has used these data

to assess the generality of scaling relationships among
quantitative leaf ecophysiological traits that define

trade-off surfaces (e.g., Wright et al. 2004) or the
relationship of such surfaces to large-scale climate

variability (Wright et al. 2005).

METHODS

Leaf and climate data

Data were compiled from both published and

unpublished sources, although all quantitative data

were published in Wright et al. (2004). Only site-based

data sets were used, i.e., those to which we could

reasonably attach climate data. The total database

consists of 2548 species–site combinations from 175

sites: 2021 different species in total, with 342 species

occurring at more than one site (data sources and the

data set itself are available in appendices associated with

Wright et al. [2004]). Site mean annual temperature

(MAT) ranged from�168C to 27.58C, and mean annual

rainfall ranged from 133 to 5300 mm/yr. This covers

most of the range of MAT/rainfall space in which higher

plants are found. We focus on the following leaf traits,

all defined as in Wright et al. (2004): photosynthetic

capacity per unit leaf mass (Amass); leaf nitrogen and

phosphorus concentration per unit mass (Nmass and

Pmass); leaf life span; and SLA, defined here as the one-

sided projected area of foliage per unit dry mass

(Cornelissen et al. 2003).

Species were grouped in PFTs by the simplest possible

groupings: phylogeny (contrasting gymnosperms and

angiosperms), growth form (grasses, forbs, shrubs, and

trees), and leaf habit (deciduous vs. evergreen). The

original GLOPNET data set included data for vines and

a number of other types. There was insufficient

replication of these, so only the four main types were

included herein.

Site climate was considered in terms of temperature,

rainfall, vapor pressure deficit (VPD), and solar

radiation annual, summed or averaged over annual

periods as well as for the growth season period only.

Details on sources and calculations of climate data were

provided in Wright et al. (2004). Results using yearly

and growth season climate indices or indices of

seasonality were similar; hence for brevity we only

report results relating to yearly climate averages.

Climate variables were cross-correlated to an extent.

Across the 175 sites, VPD and solar irradiance were

more closely associated with MAT than with mean

annual rainfall although, clearly, both MAT and rainfall

affect a property such as VPD.

Where traits were reported separately for sun leaves

and shade leaves in the source publications, only the

former were used. If data were presented separately for

recently matured and old leaves, recently matured leaves

were used. That is, where there was a choice, we used

data from leaves closer to their ‘‘peak’’ physiological

stage, prior to significant age- or light-related decline in

nutrient contents and photosynthetic capacity (Reich et

al. 1991).

Data analysis

All leaf traits were approximately log-normally

distributed across the data set, as were site rainfall and

VPD. Accordingly, these variables were log10-trans-

formed prior to analyses. Mean annual temperature and

solar radiation were left untransformed since their

distribution was approximately normal. Simple correla-

tion and multiple regression analyses were used for
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quantifying relationships between single leaf traits and

PFT attributes, climate variables, SLA, and their

combination. Inclusion of interaction terms did little

to improve the variance explained (typically by 1–4%)

compared to models without interaction terms (those

shown in Tables 1–4). Moreover, models with interac-

tions (including those with all interaction terms or the

best models following backwards stepwise regression)

had Akaike’s Information Criterion values that were

similar to or usually greater than the simpler models (no

interactions) with fewer terms, and thus the latter

models were considered the best. Thus, interactions

were uniformly omitted from all presented models

(Tables 1–4, Appendices A–C). All statistical procedures

were carried out with JMP Statistical Software 5.0.1.a

(SAS Institute, Cary, North Carolina, USA).

RESULTS AND DISCUSSION

Easily available qualitative PFT information ex-

plained a substantial portion of the total variation in

all five leaf functional traits (Table 1, Appendix A). The

PFT data by itself explained 33%, 37%, 40%, 51%, and

67% of the variation in Nmass, Pmass, SLA, Amass, and

leaf life span, respectively (these represent whole-model

r2 values with phylogeny, growth form, and leaf habit

included). In contrast, climate data (MAT, annual

precipitation, mean VPD, and solar irradiance) collec-

tively explained between 5% and 20% of variation in the

same five leaf traits (Table 2, Appendix B). Thus,

variation among species within sites is sufficiently large

that climate alone predicts only a small fraction of leaf

functional trait variation (Wright et al. 2005). In

contrast, individual species can be classified according

to combinations of major groupings (such as herb vs.

trees and deciduous vs. evergreen) that differ in

predictable ways in their average leaf traits. Therefore,

despite appreciable variation in individual leaf traits

within any individual PFT grouping, these differ

sufficiently on average among PFTs (Fig. 1) that their

(three-way) combination explains one-third to two-

thirds of global variation among species in the five leaf

traits.

All three PFT groupings (angiosperm/gymnosperm,

functional type, or leaf habit) were significant predictors

of all five ecophysiological traits in the ‘‘PFT alone’’

models (Table 1, Appendix A). As generally observed

previously, species that are gymnosperms, evergreen, or

woody on average occupy positions closer to the ‘‘slow

metabolism’’ end of the leaf trait gradient than species

that are angiosperms, deciduous, or herbaceous (Fig. 1).

The ‘‘slow metabolism’’ end of the leaf economics

spectrum is associated with low Amass, Nmass, Pmass,

and SLA and persistent leaves (Reich et al. 1997, 1999,

Wright et al. 2004). In the ‘‘climate-alone’’ models, from

one to four of the climate metrics were significant

predictors of each of the five ecophysiological traits, and

each climate metric was significant in models for 2, 3, or

4 of the ecophysiological traits (Table 2).

Although most evergreen species have longer-lived

leaves than most deciduous species, there is a class of

species that are both evergreen and characterized by

short-lived foliage (Reich et al. 1997, 1999, Wright et al.

2004). This group of species is numerically small globally

(e.g., ;4% of the woody plants for which we know

TABLE 1. Multiple regression analyses of five ecophysiological traits (mass-based net photosynthetic capacity [Amass], phosphorus
content [Pmass], nitrogen content [Nmass], leaf life span, and specific leaf area [SLA]) in relation to three plant functional types
(PFT) attributes.

Trait Mean 6 SE R2 n
Phylogeny

F
Growth
form F

Leaf
habit F

Amass 1.973 6 0.019 0.51 747 94.9*** 32.5*** 199.5***
Pmass �1.102 6 0.046 0.37 736 4.3* 29.5*** 153.7***
Nmass 0.217 6 0.010 0.33 1931 28.0*** 76.6*** 290.2***
Leaf life span 0.965 6 0.021 0.67 723 77.9*** 48.9*** 637.9***
SLA 1.991 6 0.012 0.40 2164 52.3*** 92.9*** 511.0***

Notes:We report the mean of the logarithm of each parameter and the standard error (SE) of the predicted values; n is sample size.
The F values and their significance are shown for each of the dependent variables. All whole models were significant at P , 0.001.

* P , 0.05; *** P , 0.001.

TABLE 2. Summary of multiple regression analyses of five ecophysiological traits (as in Table 1) in relation to climate metrics:
mean annual temperature (MAT), annual precipitation (PPT), mean annual vapor pressure deficit (VPD), and yearly mean
daily-summed solar radiation (RAD).

Trait R2 n MAT F PPT F VPD F RAD F

Amass 0.05 764 0.07 6.8*** 1.8 2.8
Pmass 0.19 737 19.0*** 0.4 8.5*** 83.6***
Nmass 0.12 2026 5.6* 5.1* 0.07 91.9***
Leaf life span 0.10 744 0.08 0.29 0.57 14.3***
SLA 0.20 2331 19.3*** 61.3* 4.9* 99.4***

Note: All whole models were significant at P , 0.001.
* P , 0.05; *** P , 0.001.
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evergreen/deciduous status in the GLOPNET survey),

but includes a species type, woody evergreen pioneers,

that is important in tropical forests and that has traits

similar to woody deciduous pioneers, including short

leaf life span, high nutrient concentrations, and high

metabolic rates (Reich et al. 1991, 1997, 1999). In the

current analyses, our simple division of all taxa into

deciduous vs. evergreen classes thus includes species

with leaves with deciduous-like characteristics in the

evergreen class. Does this weaken our models? We

assessed this in two ways. First we created a classifica-

tion that lumped species into one of two groups: (1)

evergreen species with leaf life span �8 months and (2)

deciduous species plus evergreen species with leaf life

span ,8 months (similar to dividing all species into

those with leaf life span �8 months vs. ,8 months).

Secondly, we simply divided species into those consid-

ered ‘‘pioneer’’ species and those that are not. The first

classification improved most model fits by 2–5%

(compared to Table 1) but requires data quite difficult

to obtain. The second classification improved model fits

marginally, if at all. Thus, the existence of species with

the relatively unusual trait combination of evergreen but

short-lived leaves only modestly lessens the predictive

power of the simple models based on simple and widely

available classifications.

Can we increase explanatory power by combining

qualitative plant attributes and climatic data? Adding

the climate metrics to the PFT data increased explan-

atory power by 3–11% for the five quantitative leaf traits

(Table 3), thus accounting for between 37% (Nmass) and

68% (leaf life span) of global variation in these five traits.

If the most easily measured of the quantitative traits

(SLA) is also included in the model, an additional 5–

25% of the variation is explained for each of the four

other leaf traits, with the result that between 62% and

73% of global variation in Nmass, Pmass, leaf life span,

and Amass can be explained (Tables 3 and 4, Appendix

C). The PFT and climate metrics generally remain

significant in these models: for instance, Amass was

positively related to MAT and solar radiation and was

negatively related to rainfall and VPD (Table 4,

Appendix C).

Adding Nmass to predictive models may also be a

viable option. Although not as easy to determine as

SLA, the total cost of analyzing, say, 1000 samples for N

content would still be 10-fold lower than the cost of

purchasing an infrared gas analysis system and associ-

ated chambers for making gas exchange measurements.

Measuring canopy Nmass from remote sensing may also

become operationally feasible in the future (Smith et al.

2003). When Nmass was added to regression models

already containing VEG, CLIMATE, and SLA, an

additional 7% and a total of 73% of total variation in

Amass was explained (Table 3), or 75–76% of total

variation in leaf life span and Pmass.

To test whether these multiple regression relationships

based on the entire data set would yield reliable

TABLE 3. Whole-model R2 values for multiple regression analyses of five ecophysiological traits (as in Table 1) in a series of models
with increasing numbers of independent variables.

Model Amass Pmass Nmass

Leaf
life span SLA

VEGETATION 0.51 0.37 0.33 0.67 0.40
CLIMATE 0.05 0.19 0.12 0.10 0.20
VEG þ CLIMATE 0.54 0.43 0.37 0.68 0.51
VEG þ CLIMATE þ SLA 0.66 0.65 0.62 0.73
VEG þ CLIMATE þ SLA þ N 0.73 0.76 0.75
VEG þ CLIMATE þ SLA þ N þ leaf life span 0.80 0.76

Notes: The models labeled ‘‘VEGETATION’’ included phylogeny, growth form, and leaf habit; ‘‘CLIMATE’’ included mean
annual temperature, rainfall, mean vapor pressure deficit, and mean solar irradiance; ‘‘VEGþCLIMATE’’ included the first two
sets combined; ‘‘VEGþCLIMATEþ SLA’’ included the prior set plus SLA; ‘‘VEGþCLIMATEþ SLAþN’’ included the prior
set plus percentage of nitrogen. See Tables 1, 2, and 4 for more details regarding the models in the first, second, and fourth rows,
respectively.

TABLE 4. Multiple regression analyses of four ecophysiological traits (mass-based net photosynthetic capacity [Amass], phosphorus
content [Pmass], nitrogen content [Nmass], and leaf life span) in relation to plant functional type (PFT) information, climate
metrics (mean annual temperature [MAT], annual precipitation [PPT], mean annual vapor pressure deficit [VPD], yearly mean
daily-summed solar radiation [RAD]), and specific leaf area (SLA).

Trait R2 n
Phylogeny

F
Growth
form F

Leaf
habit F MAT F PPT F VPD F RAD F SLA F

Amass 0.66 741 35.4*** 22.8*** 48.4*** 8.8** 39.6*** 5.9* 8.8** 274.4***
Pmass 0.65 724 24.58*** 12.7*** 7.6** 0.6 31.2*** 16.1*** 23.8*** 423.9***
Nmass 0.62 1852 0.03 26.9*** 4.5* 0.2 49.9*** 4.4* 7.5** 1151.2***
Leaf life span 0.73 671 49.4*** 27.4*** 259.2*** 0.5 0.6 13.2*** 9.9** 114.3***

Notes: The F values and their significance are shown for each of the dependent variables. This provides details of the fourth
model in Table 3. All whole models were significant at P , 0.001.

* P , 0.05; ** P , 0.01; *** P , 0.001.
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predictions, we derived the same relationships as shown

for the entire data set (Tables 1–4) using one-half of the

data (randomly chosen) and then predicted the quanti-

tative leaf traits for the other half of the data set. The fits

(Fig. 2) were generally very close to those generated for
the entire data set.

There is close coordination, physiologically and
evolutionarily, between the five quantitative leaf traits

measured in this study (Reich et al. 1997, 1999, Wright

et al. 2004), and thus a sizeable fraction of total

variation in one trait can be explained by other traits.

However, all of these traits require time, effort, and

funds to obtain, and all but SLA also require substantial

equipment, analytical, or time costs. Thus, other than
SLA the other traits do not offer an easy, simple, cheap

surrogate index for functional leaf traits, and obtaining

SLA data itself is not without time, effort, and cost

(Cornelissen et al. 2003). In contrast, the combination of

PFT information and simple climate metrics, both

generally and freely available, explain a similar fraction,

or roughly half (mean of 51% for the five leaf traits;
Table 3), of all variation in the selected leaf traits, as do

individual leaf traits in relation to one another (mean of

48% for the 10 bivariate relations of the five quantitative

leaf traits presented in this paper; Wright et al. 2004).

Given the much greater availability of simple PFT

information and databases on vegetation distribution

than of physiological data, these offer promise for
incorporation into predictive models as well as models

driven by remotely sensed information. Moreover, the

combination of PFT, climate, and SLA explain approx-

imately two-thirds of global variation in the other leaf

traits. Given that we do not have enough data to fully

explore interactions between PFTs and climate variables

and that we use only linear effects, there is ample
opportunity for further refinements of such analyses and

for development of predictive models that are statisti-

cally more sophisticated than used here. We view this as

a promising beginning, given that a greater quantity of

and better metrics for each of these variables can be

obtained, and as well, other metrics may become

available (e.g., soils data) that additionally can be used
with these in future models.

Improved ability to predict leaf attributes at a species
level will be particularly advantageous in multispecies

canopies. Given the heterogeneity among species within

sites (Reich et al. 1999, Wright et al. 2004), the

importance of species and functional-group heterogene-

ity and diversity to ecosystem processes, including

responses to global environmental change (e.g., Reich
et al. 2004), and the likelihood that the physiological

FIG. 1. Box plots of five leaf traits: (a) specific leaf area
(SLA), (b) leaf life span, (c) mass-based N concentration
(Nmass), (d) mass-based P concentration (Pmass), and (e) mass-
based net photosynthetic capacity (Amass), by qualitative plant
functional type (PFT) classifications that separate species by
phylogeny (angiosperm vs. gymnosperm), leaf habit (Ever,
evergreen; Dec, deciduous), and growth form (G, grass; H,
herb; S, shrub; T, tree). The box plots summarize the

 
distribution of points for each variable and group. The ends of
the box are the 25th and 75th percentiles or quartiles. The gray-
shaded area between the quartiles is the interquartile range. The
line across the middle of the box is the median value. The lines
extending from the ends of the box denote the maximum and
minimum values.
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response of a community canopy based on mean values

is not necessarily the same as the responses of a real

canopy made up of species differing widely in intrinsic

leaf traits, it may prove necessary at some point to

consider this functional diversity in models (Garnier et

al. 2004). In many, but certainly not all, areas of the

globe there is some information about the compositional

make-up of vegetation communities, even when there is

little or no information about ecophysiology. In such

cases, predicting the traits of the species in those

communities and then aggregating those traits to the

community as a whole weighted by their relative

abundances will provide not only a mean but a notion

of the functional diversity of the community. In

contrast, predictions based solely on climate or a

dominant functional type would only provide a mean

value. As models improve, one would expect that land

surface and vegetation dynamics models would incor-

porate heterogeneity of vegetative properties as well as

the average of those properties.
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APPENDIX A

Model parameters for the models shown in Table 1 (Ecological Archives A017-078-A1).

APPENDIX B

Model parameters for the models shown in Table 2 (Ecological Archives A017-078-A2).

APPENDIX C

Model parameters for the models shown in Table 4 (Ecological Archives A017-078-A3).
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