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Summary

1.

 

We had two objectives: (i) to determine the generality of, and extend the applicability
of, a previously reported empirical relationship between leaf-level net photosynthetic
rate (

 

A

 

M

 

, nmol g

 

−

 

1

 

 s

 

−

 

1

 

), specific leaf area (SLA, m

 

2

 

 kg

 

−

 

1

 

) and leaf nitrogen mass fraction
(

 

N

 

M

 

, mmol g

 

−

 

1

 

); and (ii) to compare these empirical results with a mechanistic model
of photosynthesis in order to provide a mechanistic justification for the empirical pattern.

 

2.

 

Our results were based on both literature and original data. There were a total of
160 and 87 data points for the leaf-level and whole-plant data, respectively.

 

3.

 

Our multiple regression for single leaves was ln(

 

A

 

M

 

) = 0·66 + 0·71 ln(SLA) +
0·79 ln(

 

N

 

M

 

), 

 

r

 

2

 

 = 

 

−

 

0·80; only the intercept (0·11) differed for the whole-plant data.
These results are not significantly different from previously published relationships.

 

4.

 

We then converted the mechanistic model of Evans and Poorter, and a modified ver-
sion which includes leaf lamina thickness (

 

T

 

) and leaf dry matter (tissue) concentration
(

 

C

 

M

 

), into directed acyclic graphs. We then derived reduced graphs that involved only

 

T

 

, 

 

C

 

M

 

, SLA, 

 

N

 

M

 

 and 

 

A

 

M

 

. These were tested using structural equation modelling, with
measured lamina thickness (

 

T

 

′

 

) and leaf dry matter ratio (LDMR, g dry mass g

 

−

 

1

 

 fresh mass)
as indicators of 

 

T

 

 and 

 

C

 

M

 

. The original Evans–Poorter model was rejected, but the modi-
fied version fitted the structural relationships well. The same qualitative models also
applied to the whole-plant data, although the path coefficients sometimes differed.

 

5.

 

Using simulations, we show that the original Evans–Poorter model predicts a posi-
tive correlation between SLA and 

 

N

 

M

 

 that maximizes 

 

A

 

M

 

. The data closely follow this
predicted relationship. The correlation between the actual values of 

 

A

 

M

 

 (standardized
units) and the predicted values obtained from the modified Evans–Poorter model was
0·74 and increased to 0·82 once three outlier points were removed.

 

6.

 

These results provide a mechanistic explanation for the empirical trends relating leaf
form and carbon fixation, and predict that SLA and leaf  N must be quantitatively
co-ordinated to maximize C fixation.
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Introduction

 

How do leaf attributes interact directly and indirectly
to determine carbon fixation? If  we can express such
interactions in a mathematical model, then we can
explore how different trade-offs between such attributes
might have contributed to the evolution of leaf form

and function. This is our basic goal. However, to be
useful such models must be empirically testable, gener-
ally applicable and mechanistic, so that such trade-offs
represent biological or physical constraints rather than
statistical artefacts.

Carbon fixation is well understood at the physiological
level, and this understanding can be translated into
mathematical models for individual leaves (Farquhar
& Von Caemmerer 1982). The variables, parameters
and functions of such mechanistic models can be mapped
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directly onto the underlying physiology. Unfortunately,
such models require species-specific and environment-
specific parameters, which makes them unrealistic for
comparative ecology.

At the other extreme are empirical regression equa-
tions that relate easily measured plant attributes to
particular components of  C fixation. For instance,
Field & Mooney (1986) reported interspecific regres-
sions between net photosynthetic rate (

 

A

 

M

 

) measured
in the field and leaf nitrogen, as well as between 

 

A

 

M

 

 and
specific leaf  area (SLA). Further work has produced
multiple regression models between the net photosyn-
thetic rate of a leaf growing in full light and a combination
of its specific leaf area and its nitrogen mass fraction
(

 

N

 

M

 

, N mass per unit leaf dry mass) (Reich 

 

et al

 

. 1997;
Reich 

 

et al

 

. 1998; Garnier 

 

et al

 

. 1999; Reich 

 

et al

 

. 1999;
Shipley & Lechowicz 2000; Meziane & Shipley 2001).
Such interspecific regression models have advantages.
Being purely phenomenological, they impose no
mechanistic constraints on the model and maximize
empirical predictive ability. They are more general
because they involve many different species measured
in the field. Finally, the independent variables are
relatively few and are easily measured, allowing easy
extrapolation to new species.

Some of these advantages are also disadvantages. In
particular, being purely phenomenological, these mul-
tiple regressions impose no constraints on the data due
to hypothesized mechanistic linkages between variables.
Because no hypothesized constraints are imposed, no
causal assumptions can be tested. Because the causal
processes that describe the generation of  the data are
not logically linked to the regression model, it is
impossible to predict how the behaviour of the model
would change if  the environmental conditions of rela-
tionships between the leaf traits change.

Our objective is to combine the strengths of empirical
and physiological, process-oriented models. Specifically,
we use structural equation modelling and the graph
theoretic operation of ‘d-separation’ to derive the pre-
dicted patterns of direct and indirect linkages between
the same set of easily measured leaf attributes that are
used in the general empirical models, given a mecha-
nistic model of leaf gas exchange proposed by Evans &
Poorter (2001). We then determine if the results, obtained
from single leaves, can be extrapolated to whole plants.
Finally, we explore the predictions of the mechanistic
model.

 

The Evans–Poorter model

 

SLA is the ratio of the projected area (

 

L

 

A

 

) of a leaf to
its dry mass (

 

M

 

):

eqn 1

SLA is also the inverse of the product of average lamina
thickness (

 

T

 

) and leaf dry mass (tissue) concentration

(

 

C

 

M

 

); 

 

C

 

M

 

 is the dry (i.e. tissue) mass per leaf volume.
Specifically, since the volume (

 

V

 

) of  a laminar leaf  is

 

V

 

 = 

 

TL

 

A

 

, then:

SLA 

 

=

 

 

 

L

 

A

 

/

 

M

 

 

 

=

 

  (

 

V

 

/

 

T

 

)/

 

M

 

 

 

=

 

 

 

V

 

/

 

MT

 

 

 

=

 

 1/

 

T

 

(

 

M

 

/

 

V

 

) 

 

=

 

 (1/

 

TC

 

M

 

) 
eqn 2

Evans & Poorter (2001) published a mechanistic
simulation model involving SLA and leaf 

 

N

 

M

 

, and other
physiological attributes related to leaf  gas exchange.
Its purpose was to explore how changes in SLA and N
partitioning affect C fixation as irradiance varies; like
any model, some processes are ignored for simplicity
(variation in cell-wall resistance, the tortuosity of
gas diffusion paths, internal shading of chloroplasts).
Although each equation in this mechanistic model was
established from the biochemistry of  photosynthesis
and empirical data, the causal topology of  the model
(the assumptions of  direct and indirect linkages
between the variables) has not been tested empirically.

The Evans–Poorter model simulates the net rate of
photosynthetic electron transport per unit leaf mass
(

 

J

 

M

 

, equation 3) based on the fraction of photosyn-
thetically active radiation (PAR) absorbed by the leaf
(

 

α

 

), the electron transport capacity (

 

J

 

max

 

) and the
incident PAR (

 

I

 

); parameters are set to those values
reported for 1000 

 

µ

 

mol photons m

 

−

 

2

 

 s

 

−

 

1

 

 by Evans &
Poorter (2001) (Table 1).

eqn 3

In this paper a subscript M refers to a mass-based value
and a subscript A refers to an area-based measure, with
the exception of 

 

J

 

max

 

 which is also an area-based meas-
ure. SLA enters the model in three ways. First, 

 

α

 

 is a
saturating function of chlorophyll content per unit leaf
area (

 

χ

 

A

 

). 

 

χ

 

A

 

 is related to organic N content per unit
leaf area (

 

N

 

A

 

), the fraction of organic N allocated to
pigment–protein complexes (

 

φ

 

P

 

), and the ratio of N to
chlorophyll in these pigment–protein complexes (

 

η

 

);
the value of 76 was obtained empirically:

eqn 4

Second, 

 

J

 

max

 

 (electron transport capacity per area) is
also a function of 

 

N

 

A

 

 = 

 

N

 

M

 

/SLA, 

 

φ

 

P

 

, 

 

η

 

, the soluble
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L
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protein N per unit electron transport capacity (

 

ν

 

) and
the amount of organic N per unit area that is not soluble
or in the thylakoids (

 

N

 

O

 

, 16·5% of 

 

N

 

A

 

 in Evans & Poorter
2001); the value of  0·079 was obtained empirically:

eqn 5

We convert 

 

J

 

A

 

 to 

 

A

 

A

 

, given 

 

Γ

 

* (CO

 

2

 

 photocompensa-
tion point) and 

 

p

 

i

 

 (internal CO

 

2

 

 partial pressure) (Von
Caemmerer 

 

et al

 

. 1994). Finally, 

 

J

 

M

 

 is equal to 

 

J

 

A

 

 (within
square brackets in equation 3) × SLA. This mechanistic
model can be shown in the form of  a directed acyclic
graph (Fig. 1a).

    ‒  


Although equations 3–5 can be expressed equivalently
as functions of either SLA or 1/(TCM), both T and CM

are indirect causes of A with respect to SLA in the orig-
inal Evans–Poorter model; in fact, the original model
did not decompose SLA into T and CM. To see this,
note that we can change both T and CM in these equa-
tions without changing either α, Jmax or JM so long as
the product (TCM) is constant, as this is equivalent to
keeping SLA constant. The only effect of SLA in the
original Evans–Poorter model is to convert from mass-
based to area-based values by changing the ratio of
projected surface to dry mass. However, it is possible
that T and CM have effects on AM that are independent
of their effects on the surface : dry mass ratio (SLA). If
this is true, then changing T and CM, even when their
product (thus SLA) is constant, will change those var-
iables that are causally closer to AM (α, Jmax, AM). If  this
occurs, then optimizing SLA for a given irradiance is
not enough, as different leaf thicknesses (T ) and leaf
dry mass concentrations (CM) could affect leaf NM –
and thus photosynthetic rate – even when their product
(TCM), thus SLA, is constant. If  so, then the leaf must
optimize SLA, T and CM simultaneously, and each
could have different ecological consequences in differ-
ent environments.

There are several reasons to expect that T and CM

could effect photosynthesis independently of  their
effects on SLA. The first is purely geometrical and
relates to the surface : volume ratio of a cell. Consider
a mesophyll cell. Relatively high proportions of cell-
wall compounds are expected in smaller cells with a
high ratio of cell wall to cell volume (Poorter & Villar
1997). On the other hand, a significant proportion
of organic N, between 40 and 70% in Evans & Poorter
(2001), is in solution. Furthermore, the mass of N per

Table 1. Parameter values used in numerical simulations of the Evans–Poorter model
 

 

Parameter Units Value

φ (maximum quantum yield) mol e– (mol photon)−1 0·425
Θ (curvature factor) unitless 0·78
Rd (daytime respiration rate) µmol e– m−2 s−1 8
φP (organic N fraction to pigment–protein complexes) unitless 0·13
η (ratio of N to chlorophyll in pigment–protein complexes) unitless 41
υ (soluble protein N per unit electron transport capacity) mol N (mmol e–)−1 0·425
NO (amount of organic N per unit area that is not soluble or in thylakoids) mmol m−2 16·5% of total
Γ* (CO2 photocompensation point) µbar 36·9
pi (internal CO2 partial pressure) Pa 30
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Fig. 1. (a) The Evans–Poorter model relating specific leaf area (SLA) and net photo-
synthetic rate per unit mass (AM) as a directed acyclic graph (left) and the reduced graph
(right) involving only the five variables in this study. (b) The modified version of the Evans–
Poorter model in which leaf thickness (T ) and leaf dry matter concentration (CM) are
causes of  variation in leaf  nitrogen content per unit dry mass (NM). Other variables:
NA (leaf N content per unit projected area); α (proportion of incident PAR captured by
the leaf); Jmax (electron transport capacity); AA (net leaf photosynthesis per unit leaf area).
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volume of leaf water is less variable between species
than either N fraction per unit dry mass or per unit leaf
area (Roderick et al. 1999a, 1999b). If  we increase the
volume of the cell, then the amount of cytoplasm (and
therefore N) will increase more rapidly than the
amount of cell wall (and therefore dry mass). Nitrogen
content per unit cell dry mass would therefore increase
while dry mass per cell volume would decrease, result-
ing in a negative correlation between NM and CM. Not
all dry mass is in the cell wall, but the overall pattern
appears to hold. Poorter & Villar (1997) showed that
NM was positively correlated with amounts of other
cytoplasmic and vacuolar compounds, and negatively
correlated with amounts of  structural and non-
structural carbohydrates and other cell-wall compounds.
A similar correlation would exist when comparing
leaves with different sizes of cells. The strength of this
correlation would depend on the trade-off  between
cell size and number, and leaf thickness (Pyankov et al.
1999). Second, species with a high CM tend to have
more collenchyma and sclerenchyma cells (Garnier &
Laurent 1994; Van Arendonk & Poorter 1994), which
would also increase CM while decreasing NM. Finally,
increases in non-structural carbohydrates would
increase CM while decreasing NM by increasing cell dry
mass without an increase in cell N. Based on these con-
siderations, we propose a modification of the original
Evans–Poorter model, in which T and CM affect NM

independently of their combined effects on changing
the ratio of projected leaf surface area to leaf dry mass
(SLA). The directed graph of this modified model is
shown in Fig. 1(b).

    


A hypothesized network of cause–effect links between
variables, in the form of directed acyclic graphs such as
those shown in Fig. 1, generates a multivariate prob-
ability distribution. All constraints in this distribution
that are imposed by the hypothesized causal network
can be obtained from the graph theoretic operation
of ‘d-separation’ (Spirtes et al. 1993; Pearl 1995, 2000;
Shipley 2000a; Spirtes et al. 2000). These constraints,
which follow necessarily from the topology of  the
direct and indirect links that form the hypothesized
causal network, can be tested statistically irrespective
of the functional form or the distribution of each vari-
able (Shipley 2000a, 2000b, 2003). If  the data approx-
imately agree with the assumptions of  multivariate
normality and linearity, as is the case in this paper, such
tests are equivalent to the maximum likelihood test of
structural equation modelling (Pearl 2000).

As many of the variables in the original Evans–
Poorter model (e.g. α, χA, Jmax) are not generally meas-
ured in large interspecific studies, it is possible to derive
a new directed acyclic graph involving only the
measured variables (SLA, T, CM, NM and AM), which
preserves the same causal topology between these

measured variables as hypothesized in the original
causal graph (Spirtes et al. 2000). Figure 1(a,b) shows
the reduced graphs that result from the Evans–Poorter
model and its modification. If  any of the statistical
constraints suggested by these new graphs do not agree
with the empirical data, then the original ones must
also be rejected. This ability to translate between causal
graphs has two important consequences. First, it
allows us to falsify the original cause–effect network
if  we can falsify the simpler one. Second, it allows us
directly to map the causal paths of the original graph
to those in the simpler graph and to provide a mecha-
nistic interpretation of  such simpler graphs which,
when translated into equations, are closer to the sim-
pler empirical equations.

Methods

 

Table 2 summarizes the data. The measured variables
were specific leaf area (SLA, m2 kg−1); T ′ (estimated
average lamina thickness, µm); leaf dry matter ratio
(LDMR, mg dry mass g−1 fresh mass); leaf N mass per
unit leaf dry mass NM (mmol N g−1); and net C assimila-
tion rate (AM, mg C g−1 day−1) from species with widely
differing leaf  morphologies, including herbaceous
and woody species, and obtained from field measure-
ments taken in full sunlight. The leaf-level data
came mainly from the literature although we also
report some unpublished results; all whole-plant data
are from herbaceous species grown in hydroponic cul-
ture in controlled conditions and at lower irradiances
than those occurring in the field. We limited our liter-
ature search to those publications that either reported
each of  the above variables, or for which sufficient
information was available to derive them. There were
a total of 154 and 43 data points for the leaf-level and
whole-plant data, respectively.

  

The measured leaf  thickness for the field data was
estimated in different ways by different authors, based
on measurements taken at different places on the leaf
blade; thus it has an error component of  unknown
magnitude. We therefore model true leaf thickness (T)
as a latent variable and the measured leaf thickness
(T ′) as an observed variable that is caused by the true
thickness plus random errors that are independent of
the other variables in the model. We fixed the path
coefficient from the true thickness to this estimated
value (i.e. T ′ → T ) to 1·0, which assumes no systematic
bias in the measurement errors, i.e. the magnitude of
the measurement error is independent of  the true
leaf  thickness. LDMR is strongly correlated with
CM (r = 0·76) (Shipley & Vu 2002). However, its error
component (1 – 0·762 = 0·42) was substantial in that
study, so we also include CM as a latent variable whose path
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coefficient to LDMR is fixed at 1·0; again, this assumes
that the strength of the correlation between LDMR
and CM does not vary systematically with CM. All other
measured variables (NM, AM, SLA) can be measured
with accuracies of  <1% of  the total variation of  the
variables. Bias due to measurement error of  these
variables would be negligible and can be ignored.
Shipley (2000a) provides details of fitting and inter-
preting latent variables. The data on whole-plant net
photosynthetic rate did not report mean leaf thickness,
so we have estimated it using SLA and leaf dry matter
ratio (LDMR, leaf dry mass/leaf fresh mass): T ≈ 1/
(SLA × LDMR).

Structural equation modelling assumes linearity
between variables and (approximate) multivariate
normality (Shipley 2000a). All variables were therefore
ln-transformed before analysis in order to better
approximate multivariate normality, and because these
variables typically have non-linear (allometric) rela-
tionships with each other. As, by definition, ln(SLA)
= −1 ln(T) − 1 ln(CM), we fixed the paths linking SLA
to its two components to −1.

Each path model was fitted using maximum like-
lihood methods, and the observed and predicted
covariance matrices were compared using the maxi-
mum likelihood χ2 statistic using the  program
(Bentler 1995). A significant (P < 0·05) value indicates
a significant lack of  fit between the observed and
predicted values, and means that the model must be
rejected; see Shipley (2000a) for more details of this
test.

All other statistical analyses and simulations were
conducted using SPLUS (SPLUS 1999).

Results

 

There are clear systematic relationships between leaf
attributes, despite varying degrees of  scatter (Fig. 2).
The whole-plant measurements (filled symbols)
generally fall within the cloud of  points representing
the measurements on single leaves. The relationship
between leaf  thickness and leaf  dry matter concen-
tration is more complicated. Although the slope
(P < 0·001) and the intercept (P < 0·001) of the rela-
tionship between these two variables in the whole-plant
data are different from those shown in the leaf-level
data (), the points of  the two data sets largely
overlap.

We regressed ln(AM) on ln(SLA), ln(NM) and a
dummy variable representing the type of  data (leaf
level or whole plant) and evaluated significance using
type III sums of  squares. Although the slopes with
respect to both ln(SLA) and ln(NM) were significant
(P < 0·05), these slopes never varied significantly
between the leaf-level and whole-plant data sets (P =
0·09 and 0·05, respectively) and there was no significant
interaction between ln(SLA) and ln(NM). There was,
however, a significant difference between the intercepts
of the two types of data (t = −5·28, 193 df, P < 0·0005).
The resulting regression equations explained 80% of
the variance in ln(AM) with a residual standard error
(SE) of 0·43. The equations (± SE) were:

leaves = ln(AM) = 0·66 (± 0·21) + 0·71 ln(SLA) 
(± 0·07) + 0·79 ln(NM) (± 0·10)

Table 2. Summary of data sources
 

 

Author/s Plant types and conditions 
Number of species 
(number of data points)

Leaf-level measurements in field
Abrams & Mostoller (1995) Woody trees in drought 6 (6)
Chazdon & Kaufmann (1993) Piper arieianum, Piper sancti-felicis 2 (2)
Kloeppel & Abrams (1995) Species of Acer 3 (3)
Körner & Diemer (1987) Woody and herbaceous monocots and dicots 21 (21)
Garnier (unpublished data) Woody and herbaceous monocots and dicots 51 (51)
Pammenter et al. (1986) Agrostis magellanica, Agrostis stolonifera 2 (2)
Witkowski et al. (1992) Two species of Banksia 2 (4)
Woodward (1986) Vaccinium myrtillus 1 (3)
Wright (2001) 61 (67)
Zotz & Winter (1996) Uncaria tomentosa 1 (1)

Plant-level measurements in laboratory
Atkin et al. (1996) Grasses 6 (6)
Den Dubbelden (1994) Herbaceous monocots and dicots 12 (12)
Dijkstra & Lambers (1989) Plantago major 1 (2)
Roumet et al. (unpublished data) Grasses 11 (11)
Poorter (1990) Herbaceous monocots and dicots, 285 µmol m−2 s−1 8 (8)
Poorter & Remkes (1990) Herbaceous monocots and dicots 24 (24)
Van den Boogaard et al. (1996) Triticum aestivum 1 (4)
Van der Werf et al. (1993) Grasses 2 (2)
Van Rijn (2001) Herbaceous monocots, 450 µmol m−2 s−1 6 (6)
Van Rijn et al. (2000) Hordeum spontaneum, 450 µmol m−2 s−1 1 (11)
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plants = ln(AM) = 0·11 (± 0·21) + 0·71 ln(SLA) 
(± 0·07) + 0·79 ln(NM) (± 0·10) eqn 6

To compare our results with those reported by Reich
et al. (1999), we present Fig. 3 in which their data are
superimposed on ours and our prediction equation for
individual leaves.

Finally, we regressed ln(A) on ln(T ′), ln(LDMR),
ln(NM) and a dummy variable representing the type of
data (leaf level or whole plant) and evaluated signifi-
cance using type III sums of squares. The slopes asso-
ciated with all three predictor variables were highly
significant (P < 0·001). Only the slope of ln(LDMR)
differed between the two types of  data (P < 0·001),
with that for whole plants being more negative (−2·05
vs −1·34). There was also a significant three-way inter-
action between ln(LDMR), ln(NM) and ln(T ′) (P < 0·02).
These interactions, although real, changed the pre-
dicted values only marginally over the measured range
of the data. We therefore report the simpler regression
(r2 = 0·80, residual SE = 0·43) ignoring all interac-
tions:

leaves = ln(AM) = 10·20 (± 1·00) + 0·77 ln(NM) (± 0·10) 
− 0·61 ln(T ′) (± 0·07) − 0·81 ln(LDMR) (± 0·10)

plants = ln(AM) = 9·91 (± 1·00) + 0·77 ln(NM) (± 0·10) 
− 0·61 ln(T ′) (± 0·07) − 0·81 ln(LDMR) 
(± 0·10) eqn 7

  

The structural equation model derived from the origi-
nal mechanistic model of Evans and Poorter (Fig. 1a)
provided a very poor fit to the empirical data (χ2 =
69·81, 5 df, P < 5 × 10−6). This was true although every
individual hypothesized cause–effect link in the model
(T → SLA, CM → SLA, SLA → AM, NM → AM) was
significantly different from zero and provided good
predictive ability; the r2 values for ln(SLA), ln(AM),
ln(LDMC) and ln(T ′) in this rejected model were
0·955, 0·689, 0·996 and 0·889, respectively. The lack
of  fit came from the incorrect predictions of  partial
correlation (i.e. the assumed indirect links) between
the variables suggested by the overall structure of  the
model. However, the modified version of the Evans–
Poorter model (Fig. 1b) provided a good fit to the data
(χ2 = 1·55, 3 df, P = 0·67). Each free path coefficient
was significantly different from zero, and each was of
the correct sign. This fitted model is shown in Fig. 4(a).
Figure 4(b) shows an alternative model that provides a

Fig. 2. Scatterplot matrix of the measured variables for leaf-level (open circles) and whole-plant (filled circles) data. Specific leaf
area (SLA, m2 kg−1); leaf thickness (T′, µm); leaf dry matter ratio (LDMR, mg dry mass g−1 fresh mass); leaf nitrogen mass
fraction (NM, mmol N g−1); and net photosynthetic rate (AM, nmol CO2 g

−1 s−1) from species with widely differing leaf
morphologies, including both herbaceous and woody species. All variables are ln-transformed.
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slightly better fit (χ2 = 0·16, 2 df, P = 0·92), which was
developed using an exploratory method (Shipley 1997).
Although apparently different, this second model is
actually very similar to that in Fig. 4(a). This is because,
given the extremely strong correlations between T, T ′ ,
CM, LDMR and SLA, the direct and indirect paths
linking these variables to AM and NM are also similar.
Finally, we tested another model, similar to that in
Fig. 4(a) but in which NM is directly caused only
by SLA rather than by T and CM, that is, T and CM are
indirect causes of NM. This model was rejected (χ2 =
12·11, 4 df, P = 0·02). Thus SLA is only spuriously
correlated to NM because SLA and NM are caused by
T and CM, and each of T and CM have effects on AM

that are independent of their effects on SLA.
We next tested the whole-plant data with the same

two models as in Fig. 4. Both models were clearly
rejected (P < 10−4). However, examination of  the
residuals revealed that the lack of fit for the model in
Fig. 1(b) was due to the requirement that the estimates
of leaf thickness (T ′) for these whole-plant data be an
unbiased estimate of the actual average leaf thickness
(T ); this requirement was imposed by fixing the path
coefficient to unity between T and T ′ (cf. Figure 1b).
Because T ′ in the whole-plant model was obtained from
SLA and LDMR, rather than being directly measured,
and as this could have resulted in a systematic devia-
tion from a 1 : 1 relationship between T and T ′, we
allowed the T → T ′ slope to be estimated from the data
rather than being imposed. The fits of the models were

Fig. 3. Scatterplots of net photosynthetic rate (AM, nmol CO2 g
−1 s−1) vs SLA (m2 kg−1) and leaf nitrogen mass fraction (NM, mmol g−1)

for whole-plant (solid circles) and leaf-level data (open circles) from this paper and from Reich et al. (1999) (stars). The last
graph plots observed net photosynthetic rates against predicted values using the regression equation from our leaf data only.

Fig. 4. Two alternative path models that fit the leaf-level
data. Maximum likelihood estimates of the path coefficients
are given along with standard errors. Thick lines and values
without standard errors are fixed. Also shown are residual
variances (s2) and explained variation (r2) of each endogenous
variable. Variables enclosed in circles are latent.
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substantially improved (Fig. 5a: χ2 = 4·55, 2 df, P =
0·10; Fig. 5b: χ2 = 4·31, 1 df, P = 0·04). The path coef-
ficient from the true leaf thickness to the estimated
thickness was 1·13 (SE 0·01), showing that the thickness
of thinner leaves was systematically (but only slightly)
underestimated relative to thicker leaves. Furthermore,
there were two data points that were clear outliers and
from the same species (Plantago major, reported by
Dijkstra & Lambers 1989) that, together, accounted
for 46% of  the parameter variance and whose leaf
thickness values were approximately three times larger
than the others. If  these two data points are removed,
the two models provide an acceptable fit to the data
(Fig. 5a: χ2 = 3·44, 2 df, P = 0·18; Fig. 5b: χ2 = 3·368,
1 df, P = 0·07). The path coefficient from leaf thick-
ness to leaf N content was small and not significantly
different from zero in these whole-plant data.

 

Ideally, one would obtain the parameter values of
equation 3 for each species in the data set. It is because
this is not possible in practice that such mechanistic
simulation models are so difficult to apply to compar-
ative ecology. Instead, we apply the model parameters
from Evans & Poorter (2001) at an irradiance of
1000 µmol m−2 s−1, as photosynthesis would be close to
light saturation at this level (Table 1), and we compare
observed and predicted relative values of AM, (AM as a
proportion of the maximal AM observed or predicted).

Figure 6(a) (open circles) plots the observed relative
values of AM and SLA (r = 0·66, P < 0·001). The quan-
tiles of NM in the empirical field data were: minimum =
0·36, 5% = 0·52, 25% = 1·03, 50% = 1·41, 75% = 1·75,
95% = 2·58, maximum = 3·29 mmol g−1. The seven solid
non-linear lines in each of the three graphs in Fig. 6
show the model predictions relating AM and SLA at
these seven N mass fractions. The relative values of
AM that are predicted by the original Evans–Poorter
model, given only SLA and NM, are shown in Fig. 6(b)
(filled circles). These predicted values are close to the
observed values, although the predicted values tend to
overestimate AM for a given SLA. At each NM, AM

increases with SLA up to a maximum, after which AM

decreases. As expected, leaves with a higher NM are
predicted to have a higher AM at a given value of SLA.
However, the value of  SLA that maximizes AM is
predicted to increase linearly with increasing NM even
though irradiance is constant: the equation describing
this optimal combination of SLA and NM is SLA =
0·43 + 7·68NM. The empirical regression of SLA on
NM (thin line) is SLA = 1·86 + 7·49NM (r = 0·59, P <
0·001). Neither the slope nor the intercept of this
regression is significantly different from that of  the
optimal line: t = 1·09, P = 0·28 (intercept); t = −0·23,
P = 0·82 (slope). Figure 7(a) shows the empirical rela-
tionship between SLA and NM as well as this predicted
optimal relationship. On average, SLA and NM covary
in these leaves around those values predicted by the
original Evans–Poorter model to maximize AM, although
there is substantial residual variation around these
optima. Furthermore, the predicted optimal relative
AM–SLA relationship closely follows the limiting
values observed in the empirical data (Fig. 6, left).

The modified version of the Evans–Poorter model
removes NM and SLA as independent forcing variables
and replaces them with T and CM. SLA is calculated
from 1/(TCM). NM is predicted from the structural
equation model (remembering that the structural
equation must pass through the grand means of SLA,
T and CM) as NM = 6·25/T 0·40 ; in other words, this
modified model requires only T and CM and does not
require empirical information about NM. Note that,
for a fixed SLA, a compensatory increase in CM and
decrease in T reduces NM. Figure 6(b) (solid circles)
shows the model output. Despite the facts that this
modified model predicts NM rather than having NM

provided as independent data, and that the model did
not constrain these predicted NM values to follow those
that would maximize AM, the predicted relative values
of AM do follow the maximal values predicted given
only T and CM. Figure 8(a) shows the relationship
between the observed and predicted values. The corre-
lation coefficient is 0·74, but there are three species
(filled circles) whose predicted values of relative AM are
much higher that actually observed (two plants of Acer
saccharum and one of Acer platinoides from Kloeppel
& Abrams 1995) (Fig. 7a). The NM predicted for these
species (and therefore the AM) is higher than is observed,

Fig. 5. The same two alternative path models as in Fig. 4 that
fit the whole-plant data. Dashed lines represent paths whose
coefficient are not significantly different from zero. See Fig. 4
for more information.

CM
0 83.
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Fig. 6. (a) Observed values of net photosynthetic rate (AM nmol g−1 s−1) relative to its maximum value vs SLA (m2 kg−1) for leaf-
level data. The solid, non-linear curves are predicted values of the original Evans–Poorter at different leaf nitrogen mass fraction.
Arrow, combinations of AM and SLA that maximize AM for a given NM according to the Evans–Poorter model. (b) Predicted
values of net photosynthetic rate relative to the maximum value vs SLA for leaf-level data given by the Evans–Poorter model.
(c) Predicted values of net photosynthetic rate (AM) relative to the maximum value vs SLA for leaf-level data given by the
modified Evans–Poorter model.

Fig. 7. (a) Observed values of leaf nitrogen mass fraction (NM, mmol g−1) and SLA (m2 kg−1). Also shown is the regression line
(SLA = 1·86 + 7·49NM, r = 0·59, P < 0·001) and the SLA–NM combinations that are predicted to maximize AM in the Evans–
Poorter model (SLA = 0·43 + 7·68NM). (b) Leaf dry matter ratio (mg dry mass g−1 fresh mass) vs leaf thickness. Filled circles are
observations for which NM was less than expected given SLA.
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as the modified model predicts NM from T and CM. If
these three outliers are removed, then the correlation
coefficient increases to 0·82.

Discussion

For most plants the primary function of  leaves is to
fix C. Although many different morphological and
physiological attributes must interact to determine net
C fixation within a given environmental context, there are
certain combinations of traits that are either physically
impossible, or that lead to such suboptimal returns on
C fixation that those combinations have been removed
by natural selection. Presumably, the empirical rela-
tionships between AM, NM and SLA derive from such
physical and evolutionary constraints. The objective of
this paper was to develop a mathematical model that
can link these empirical interspecific patterns to under-
lying mechanistic processes, and then to explore the
consequences of  such trade-offs for comparative
ecology.

 

Leaf-level photosynthetic rate was correlated with
SLA at an interspecific level, and the correlation was
strengthened when combined with leaf NM. Such pat-
terns have been reported already in the literature, and
our results confirm these trends. In particular, Fig. 3
shows a good quantitative concordance between our
leaf-level relationships and those previously reported

(Reich et al. 1999), and emphasizes the generality and
importance of this empirical relationship. The rela-
tionship is also robust to experimental manipulation.
Meziane & Shipley (2001), in a controlled-environment
study of 22 herbaceous species, found that at high irra-
diance (1100 µmol m−2 s−1) the changes induced in AM

by changing the nutrient supply followed those pre-
dicted by the multiple regression of Reich et al. (1999).
Reducing the irradiance to 200 µmol m−2 s−1 changed
the intercept of the mean AM but not the slope of the
relationship.

It is surprising that our whole-plant data generally
fall within the scatter of  the leaf-level data, which
would allow one to scale up from single leaves to whole
plants. This result must remain tentative, for several
reasons. First, all the whole-plant data came from sin-
gle herbaceous plants grown in hydroponic solution, at
irradiance levels below those found in the leaf-level
data (Table 2) and with much less self-shading than is
typical in nature. Second, they came from a biased sub-
set of species having leaves that were thinner, less dense
(as estimated by LDMC), and having more leaf N per
dry mass than most of the leaf-level data. Many of the
whole-plant data come from grasses, and the relation-
ship between leaf  thickness and leaf  tissue density
differs from that in dicots (Pyankov et al. 1999).

ln(AM) is also correlated with ln(LDMR) and ln(T ′),
and these two variables together have the same predic-
tive ability as ln(SLA). Whereas projected surface area
is difficult to measure and interpret in species lacking
typical laminar leaves, we note that LDMR and T ′  can

Fig. 8. (a) Observed and predicted values of net photosynthetic rate (AM, nmol g−1 s−1) relative to the maximal values of the
original Evans–Poorter model; r = 0·76. Also shown is the 1 : 1 line. (b) The same two variables, using the predicted values of
the modified Evans–Poorter model; r = 0·74. Three outliers are shown by solid circles; if  these are removed, r = 0·82.
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be applied to any photosynthetic organ. It would be
interesting to determine if the regression equation holds
for species lacking laminar leaves.

    


The regression equations discussed above are impor-
tant because they are applicable to the leaves of a wide
range of plant species in the field when growing in full
light. Why do these empirical relationships recur? Pre-
sumably, they are generated by some basic physical or
functional constraints on leaf form and function, but
the regression equations themselves cannot identify
these constraints and certainly cannot be used to argue
for or against any particular mechanistic explanation.
A mechanistic explanation is proposed in the simula-
tion model of Evans & Poorter (2001). This explana-
tion is explicit in the cause–effect links between the leaf
attributes included in the mechanistic model. How can
one map this explanation of  the mechanistic model
to the more general empirical patterns described by
regression equations? Once the mapping has been
made, how can one empirically test the assumed expla-
nation, as represented by the network of direct and
indirect relationships?

To produce such a link, we first converted the Evans–
Poorter model into a directed acyclic graph and then
used the graph theoretical operation of d-separation to
predict how it must be modified when some of its varia-
bles become latent, that is, unmeasured but still impos-
ing constraints on the patterns of correlation between
the remaining variables. Given the new reduced graph,
we then tested the predicted patterns of direct and indi-
rect correlation that are suggested by the graph (and
therefore also by the original Evans–Poorter model)
using structural equation modelling. The model asso-
ciated with the original Evans–Poorter model was
rejected by the data, and this was due to the assump-
tion that NM is causally independent of  SLA, T and
CM. Another model, in which there was a direct effect
SLA → NM, and in which both T and CM were only
indirect causes of NM through their effects on SLA,
was also rejected by the data. Besides this statistical
reason for rejecting a model with SLA → NM, we can
think of no biological mechanism to justify such a link.
However, as argued in the Introduction, there are
biological reasons to expect that changes in leaf thick-
ness and tissue concentration (T, CM) would induce
changes in leaf NM. The directed graph, derived from
the modified Evans–Poorter model, which incorpo-
rates these effects, provided a good fit to the data.
Thus the empirical correlation between SLA and NM is
spurious because both SLA and NM decrease with
increasing values of T and CM.

Although this modified Evans–Poorter model suc-
cessfully predicts the patterns of direct and indirect
correlation between the measured variables, and although
its predicted values of AM agree closely (at least on a

relative scale) with the observed values, there was an
even more surprising fit between model and data. The
original Evans–Poorter model predicted that, to max-
imize AM, a leaf must co-ordinate its SLA and NM such
that SLA = 0·43 + 7·68NM. This prediction was a
consequence of the model and was not based on any
empirical constraint, yet the empirical regression of
SLA on NM agreed closely and showed no significant
deviation from the theoretical relationship. As the
structural equation model based on the modified
Evans–Poorter model provided the predicted relation-
ship between NM and its two direct causes, T and CM

(and also its two indirect indicators, T ′ and LDMR),
we parameterized the modified Evans–Poorter model
using this predicted relationship. The resulting model
predicted AM just as well as the original Evans–Poorter
model (even better if  we exclude three clear outliers),
although the predictions of this modified model were
obtained using only T ′ and LDMR. Significantly, the
predicted values of SLA and AM followed those pre-
dicted to optimize AM. It would be interesting to com-
pare this predicted relationship between SLA and NM

with the notion of the critical N fraction in crop mod-
elling (Lemaire & Millard 1999).

     
   

We can directly map the paths in the path model
(Fig. 4a) to the paths of the modified Evans–Poorter
model (cf. Figure 1b). The T → SLA → AM path in the
path model is derived from the sum of T → SLA →
NA → α → AA → AM + T → SLA → NA → Jmax → AA

→ AM paths of the modified Evans–Poorter mecha-
nistic model. These two paths in the mechanistic
model represent the effect that changes in leaf thick-
ness would have on AM if  NM was held constant. This
occurs solely by changing the surface : dry mass ratio
of the leaf. Changing this ratio changes (i) the propor-
tion of incident light absorbed by the leaf by changing
the chlorophyll content per unit leaf area; and (ii) the
electron transport capacity by changing the allocation
of N per unit leaf area between thylakoid N, soluble
protein N and chlorophyll (see equation 10 of Evans &
Poorter 2001). The CM → SLA → AM path in the path
model is interpreted in the same way relative to the
mechanistic model.

The T → NM → AM and CM → NM → AM paths in
the path model have a different interpretation. The
T → NM → AM path is derived from the T → NM → NA

→ α → AA → AM + T → NM → NA → Jmax → AA → AM

paths of the modified Evans–Poorter model, and
describes how changes in leaf  thickness affect the
amount of  soluble leaf  N per unit dry mass for a leaf
with a constant SLA, which then cascades throughout
the rest of the path. In other words, different trade-offs
between T and CM for a given SLA will have different
consequences for NM and therefore AM. A similar
interpretation is obtained for the CM → NM → AM
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path. Finally, there is the SLA → AA → AM path that
converts the area-based measure to the mass-based
measure. Note that the first step in these paths (T →
NM and CM → NM) is not derived from any mechanistic
link in the original Evans–Poorter model; indeed,
these paths are absent from the original model. It will
therefore be important to better explicate this path in
mechanistic terms. We have explained in the Introduc-
tion how variation in mesophyll cell sizes (surface :
volume ratios) and the proportions of fibres and non-
structural carbohydrates could all lead to such a path,
but this explanation must remain speculative until
these are measured and explicitly included in a path
model. However, each of these hypotheses can be for-
malized in an extended version of the path model, and
tested.

    


Plants adjust their SLA to the ambient light condi-
tions under which the leaves develop. Decreased light
increases SLA (Hanson 1917; Abrams & Kubiske
1990), and this also holds in interspecific comparisons
(Smith et al. 1998). Indeed, Evans & Poorter (2001)
developed their original model to explore why this
should occur. However, little is known about the rela-
tionship between SLA and nutrient availability.
Experimental studies suggest that SLA decreases
with decreasing nutrient supply (Hirose et al. 1988;
van Arendonk et al. 1997, Meziane & Shipley 1999).
Witkowski et al. (1992) reported that leaves of  two
Australian tree species growing in dryer and more
nutrient-poor soils also had a lower SLA due to thicker
leaves with more dense tissues. Certainly, sclerophylly
is associated with nutrient-poor conditions independ-
ent of water supply, as such leaves are typical of plants
growing in acidic, nutrient-poor bogs (Pensa & Sellin
2002; Campbell & Rochefort 2003; Niinemets & Kull
2003; Burns 2004). The Evans–Poorter model provides
an explanation for this trend: to maximize AM the leaf
must co-ordinate its SLA and NM to balance the amount
of organic leaf N per mass with the surface : dry mass
ratio which determines the N content per unit area.
Surprisingly, the empirical relationship between SLA
and NM follows the theoretical relationship that maxi-
mizes AM to within the statistical precision available to
us. In doing so, leaves must simultaneously modify T
and CM, as both determine SLA and NM; there is, of
course, substantial variation in NM that is not related
to these morphological attributes, but that contributes
to variation in AM. Leaves are free to vary this part of
NM independently of  T and CM, and this means that
the SLA–NM constraint is not absolute. As a consequence,
there is also residual variation around the predicted
optimal values of relative AM in the mechanistic models.

What might be the origin of these deviations from
optimality? It seems unlikely that leaves have actually
evolved to maximize instantaneous C fixation. Rather,

fitness should be more closely related to net C fixation
over the lifetime of the leaf. Leaf life span is negatively
correlated with SLA (Reich et al. 1998). The degree to
which leaf thickness vs leaf tissue concentration deter-
mines leaf life span has not been studied in detail, but
Wright & Westoby (2002) report a better correlation
for T than CM. Looking at Fig. 6, we see that when a
species has a suboptimal AM for a given SLA, it also
has a suboptimal NM for that SLA. This results in a
non-linear relationship, as species with higher SLA are
apparently more suboptimal. This occurs, according
to the model, because the leaf has a relatively higher
CM and a relatively lower T for that value of  SLA.
Figure 7(b) shows that those species with a lower than
expected NM for a given SLA are those that are thinner
but with denser leaves. The inclusion of leaf life span
and lifetime AM in the model might explain some of the
residual deviation. If  so, then combinations of CM and
T that are suboptimal with respect to simultaneous AM

might still maximize leaf lifetime AM. These hypotheses
are testable using our approach and can be cast in
mechanical terms (Niklas 1992). Only the data are missing.
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