Philodendron bipinnatifidum

In the 1960s & 70s in Sydney, Philodendron bipinnatifidum was very popular both as an indoor plant and as an outdoor plant in tropical-themed gardens. It looks like Monstera deliciosa, the Fruit Salad or Swiss Cheese Plant which has its origins in southern Mexico and Central America, but P. bipinnatifidum comes from further south, Argentina, Bolivia, Brazil and Paraguay. Like Monstera, it has huge, dark green, deeply lobed leaves up to 1.5 metres (or more) long and given half a chance, can grow into a massive epiphyte, a thick stemmed, rambling plant that can fill a room. It is grown for the foliage, as flowers may take 15 - 20 years to develop.

Their reproductive strategy is intriguing. Flowers are produced in an elongated central cone called a spadix which is surrounded and protected by a spathe, a modified leaf that most would regard as a single, very large petal. Philodendrons belong in the plant family Araceae. All members of this family are referred to as aroids and their inflorescences can be recognised by the characteristic spadix enclosed by the spathe. Arum Lilies (Zantedeschia aethiopica) are typical aroids.
Fertile male flowers are produced at the tip, sterile male flowers in the centre, and fertile female flowers at the base. Sterile males between fertile males and females reduce the chance of self-fertilisation.

Once the spathe opens, for two days, sterile male flowers maintain a constant temperature ~ 30°C above that of the surrounding area (thermogenesis), to volatilise and emit beetle (mostly Cyclocephala spp.) pheromones. The high temperature increases the distance at which the scent can be discerned by the beetles and increases probability of pollination, and also helps to energise the beetle while it is inside the flower.

Curiously, fats fuel this process. Huge lipid reserves are rapidly broken down by β-oxidation and enter the TCA cycle to become carbon dioxide. This supports an alternative mitochondrial pathway that makes very little energy but a lot of heat. It is an example of a counter-intuitive adaptation in plants - a pathway that has evolved to be inefficient at making energy but very efficient at promoting fertilisation.

Boos, J, Lucas, S., Exotic Rainforest, Pollination in Aroids:
http://www.exoticrainforest.com/Natural%20and%20artificial%20pollination%20in%20aroids.html
Exotic Rainforest: http://www.exoticrainforest.com/Philodendron%2Obipinnatifidum%20pc.html
Wikipedia: https://en.wikipedia.org/wiki/Philodendron_bipinnatifidum

Brian Atwell, Alison Downing, Kevin Downing
Department of Biological Sciences
Faculty of Science and Engineering

Characteristic eye drop leaf scars on the trunks of Philodendron